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Abstract—Transverse impact problems in which the elastic and plastic indentation effects are considered,
involve a nonlinear integral equation for the contact force, which, in practice; is usually solved by an-
iterative scheme with small increments in time. In this paper, a numerical method is proposed wherein
the iterations of the nonlinear problem are separated from the structural response computations. This
makes the numerical procedures much simpler and also efficient. The proposed method is applied to some
impact problems for which solutions are available, and they are found to be in good agreement. The effect
of the magnitude of time incremeni on the resulis is also discussed.

1. INTRODUCTION

The earliest work on transverse impact of a beam
which also took the local indentation into account
was done by Timoshenko in 1913. This work has
been cited by several authors (e.g. [1, 2]). The primary
objective in such impact problems is the computation
of the impact force history. By defining the local
indentation as the difference in displacement of the
impactor and that of the beam at the impact point,
one can write down the equations of motion of the
impactor and the beam. An integral equation for the
contact force is obtained by assuming a contact law
that relates the contact force and the amount of
indentation. The Hertzian type of contact law,
F =ka'®, is assumed to hold good for isotropic
materials. In the above equation F is the contact
force, o is the indentation, and &k is the contact
coefficient. Because of the above relation the integral
equation for the contact force becomes nonlinear,
and has to be solved by an iterative scheme with small
increments in time. Once the impact force history is
known, the beam response can easily be computed.
This method is straightforward, but too lengthy and
tedious. It can be applied to amy structure, e.g.
Karas[3] applied this method for the problem of plate

- impact.

An interest in the low velocity impact problems has
been revived with the advent of composite materials.
For example, the impact resistance of graphite epoxy
composites, which find considerable application in
aircraft structures, is much lower than that of alumi-
num. In the normal operational mode or during
maintenance, the composite facing of an aircraft
structure may be exposed to foreign object impact
from dropped handtools, runway debris, sometimes
even from birds and hail stones. The damage is often
internal and not visible from the impact side, and
may escape inspections. Consequently, there is a
greater need for understanding the impact response
of composites for better design. A number of works
on foreign object impact damage to composites can
be found in{4].

Sun and Yang[3] used experimentally measured -

contact laws to study the impact response of com-
posite laminates. The impacted structure was mod-
elled by finite elements, but the basic principle was the

same as that described in earlier works[2, 3]. In this
paper we proposed a numerical algorithm that will
drastically reduce the computational effort. Also, this
method will be very advantageous, if one is interested
in parametric studies by changing the impact param-
eters such as impactor mass, impact velocity and the
contact law.

2. AN EFFICIENT NUMERICAL METHOD
Assume that a rigid mass m impacts a structure of
any general type with a velocity v,. We are concerned
only with problems wherein the direction of impact
is normal to the structure at the point of impact.
Reckoning the beginning of contact as time ¢ = 0, the
equation of the the impactor can be written as

mz = —F(t), ®»

where x is the displacement of the impactor, and F(¥)
is the contact force which we are interested in. The
double dots in the above equation denote the second
derivative with respect to time. Let w(z) be the
normal displacement of the structure at the impact
point. w(?) can formally be written as

w(t)= JXF(r)g(t,-— 1) dr, (2]
0 :

where g(¢) is the dynamic Green’s function[6] for the
w displacement. It should be noted that g(z) depends
entirely on the properties of the impacted structure.
By definition, indentation o is the difference in dis-
placement of the impactor and that of the structure
at the impact point. Thus

a{t) =x(t) — w(2). 3

The contact law may be-of a general form as given
below:

F=¢(@)ora=9¢(Fa=a
F=0, ¢ < a. @

In the above relations «, is the permanent inden-
tation, which is zero as long as the indentation does
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not exceed a critical value. Details on such inelastic
contact laws are given in[5]. In practice, eqns (1)-(4)
are solved by an iterative scheme. In what follows we
suggest an algorithm wherein the iterations of the
above nonlinear problem are scparated from the
structural response computations, thus making the
numerical procedures much simpler.

We shall assume that the contact force variation is
linear in time during each small increment 4. Thus

F(t)= Y qR{t—idt), ®)

i=0,1,2,..

where g;'s are the unknowns that decide the contact
force history, and R{ ) is a function in time defined
as follows:

R —1y=0, <1t <t
=(t —ty)/4t, t, <t <ty+ 4t
=1, D +4e

Substituting (5) in (2) we get

w() = Y. gqH{t—idt)

i=0,1.2,..

xJ' R{t —idt)g(t —)dr, (6)
iAr
where H( ) is the Heaviside step function. The

above integral can be simplified by the substitution
0 =1 — iAt. Thus

ft R{t —idt)g(t —1)dr

idt

t—idt

=f R{8)g(t — it — 0) do
0

= S@ —idt),

where

S(t) = J‘R(r Yg(t — 1) dr. )

One can see that S(¢) is nothing but the response
of the structure to the loading R{¢). So, eqn (6)
becomes .

[ 4

w(t) = GH (¢t —idt)S(t —idt). (8)

i=0,1.2,..

Since S(¢) depends only on the impacted structure or
the target, it is seen that w(z) has been expressed as
a linear function of the unknown g;’s.

From eqns (1), (5) and (8) we can write the
expressions for the contact force, velocity, and dis-
placements at any time r = i4t as follows.

F=q+q+q+..... +4;—y

=L+ gy
Uy=0_— F,_Atjm —q;_,4t[2m ®
Xp=x;_+v;_ At — F,_\(4ty2m — ‘Ii—l(dt)z/(’m

Wi=qSi+ @S+ @S+ ... + 1Sy

In the above equations v; is the velocity of the
impactor at ¢t =idr and S;= S(idt). Using (9), eqns
(3) and (4) can be written as

o= X;— W;
or

(Fimi + 1) = Ci— ¢S + (4r)/6m}, (10)
where

Ci=x;) + v, 4t — F;_(d1)[2m
@St @S+ .. ... + g;—25)

Equation (10) is a nonlinear algebraic equation in the
unknown g;_, which determines the contact force at
t = iAtas F; = F;_, + g;—,. It may be noted that the
factor C; is computed from the impact history up to ¢
= (i — 1)At and hence it is known. Equation (10) can
be solved by assuming a starting value for g;_, (usually
zero) from which the left hand side can be evaluated.
From this an. improved g;_, is obtained as

g1 ={Ci— €5(E)}/{Sx + (d1)*/6m}.

The iteration is continued until the difference between
successive values of ¢;_, is less than a predetermined
maximum, say 1% of ¢;_,. From the final vaiue of
g;_., other quantities such as F, w, x, and v; can be
computed using the set of eqns (9). Solving eqn (10)
is much easier and faster, especially when the struc-
ture has to be modelled by finite elements. In such
cases finite element method is used to compute the
S—function numerically.

If one is interested in the respones of the structure
such as stress, strain, or displacement at a particular
point, it can be obtained using the convolution

.integral as explained below. Let us assume that the

strain at a point can be expressed as

v

e(r) = J’F(r)ge(t _1)dr,
1}

where g.(¢) is the Green’s function for the strain. By
following the steps used in deriving eqn (8) it can be
shown that

e(t)= gH 1 —idt)S(t — idt),

i=0,1,2,..

where

S)=Sf= f’R<1:>ge(t —1)dr.
0

Thus, the strain response due to impact is given by

e(idt) = e;= quSf + q;ST_ 1 + @St 2

From the above discussions it is evident that the
only information about the structure that is needed
to solve the impact problem is the function S(z).
Once S(¢) is generated, it can be used as a numerical
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Fig. 1. Contact force and displacements for the
Timoshenko problem No. 1[7].

Green’s function to solve the impact problem irre-
spective of the impact parameters such as impactor
mass, impact velocity, and the contact law. Similarly,
the function S*(¢) can be used to compute the struc-
tural response like strain (stress or displacement) due
to impact.

3. NUMERICAL EXAMPLES

In order to validate the above described method
several examples were solved. One of them was the
Timoshenko impact problem[7] wherein a
1% 1x 15.35cm simply supported steel beam was
impacted by a 1cm radius steel ball with an initial
velocity of 1cm/s. The beam properties were such
that the fundamental frequency is 1000 Hz. The same
problem was also solved by Sun and Huang[8] using
high order beam finite elements. While using the
present method the Green’s function for the central
deflection of the beam was obtained by using the
modal expansion method[6]. The time increment At
was 5 uS. The results shown in Fig. 1 agree very well
with Timoshenko’s solution and also with that of Sun
and Huang[8]. If the mass of the impactor is not
small compared to that of the beam, then multiple
collisions may occur. In order to show that the
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Fig. 3. Effect of 47 on the contact force history.

proposed method can handle such situations, a sec-
ond example[9] was also solved. In this example a
2 cm radius steel ball impacts a 1 x 1 x 30.7 cm sim-
ply supported steel beam with a velocity of 1 cm/s. A
time step of 20 us was used. The results shown in Fig.
2 have excellent agreement with that given in{9]. It
should be mentioned that the contact law used in the
above examples was the Hertzian relation for the
indentation of half-space by a sphere.

4. EFFECT OF VARYING AT

The time increment A+ was varied in several exam-
ples and the following were observed. The size of 4t
depends upon the number of harmonics and their
periods involved in the impact force history and also
in the strain (or stress) computed using the con-
volution integral. The time increment should be small
enough to span one half period of the force cycle with
sufficient number of steps. For example, in Fig. 2 the
force attains the first maximum at about 100 us and a
At of 20 us gives good results. In order to describe this
more explicitly another example is chosen wherein
multiple impacts with smaller periods occur.
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Fig. 4. Effect of 4¢ on the strain response due to impact.
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25 x 25 x 2mm is impacted at the center with a ball
of mass 33.51 gm. The density of the beam material
is 8 gm/cc and the Young’s modulus is taken as
2 X 10° MPa. The impact velocity is 10 m/s and the
contact law is assumed to be F = 10%"* N/m"*. The
impact force history and the strain on the outer
surface at the center are shown in Figs. 3 and 4
respectively. The impact force consists of several
impulses of period about 30 xs. Time steps of 1 and
5 us give converging results up to a period of about
100 us. Afterwards there occurs a phase difference,
but the magnitudes remain almost the same. A time
step of 10 us predicts the force correctly up to
¢ = 80 us. Thereafter the deviation is significant. The
last two collisions merge into a single impact of
longer period. Such divergence is conceivable, be-
cause the impact event depends upon the motions of
both the ball and the beam, and it can be affected by
the previous force history. In this example one half
period of the impact cycle is about 15 us, and so a

time step of 1 or 2 us should be good enough to-:

predict the whole impact event. Nevertheless, the
strain response (Fig. 4) is good even for 4t = 10 us.
It may be noted that for larger time increments the
information about higher harmonics is missing, but
the average strain response is reasonably good.

5. EFFICIENCY OF COMPUTATION

The efficiency of the present method can easily be
inferred without considering any particular examples.
Assuming the impacted structure is modelled by finite
elements, solution of an impact problem by existing
methods will take a computational time which is
about .two to three times of the time required for
dynaniic analysis by direct integration methods. Also,
the time step 4 will usually be much smaller in finite
element methods to ensure convergence. Thus the
impact problem will require more number of steps for
a given time interval. For example, a plate modelled
by 16 elements and 400 degrees of freedom requires
a central processing time of 400 sec on a CDC 6500
computer for 200 time steps. The same will be about

1000 sec for an impact problem solved by existing
methods. Whereas in the present method, once the
function S(¢) is generated and stored in a magnetic
tape, the information can be used for any number of
impact problems involving the same structure and
the same impact point. The computational time
required for computing S(z) wiil be the same as that
required for the dynamic analysis, say 400 sec. With
S—function, the impact problem is found to require
only about 8 sec of CP time for 200 time steps. To
summarize, the CP time required for solving N
impact problems by existing methods will be 1000 N
seconds, and the same for the proposed method will
be (400 + 8N) sec. The computational advantage will
increase many times as N increases. This method will
be useful in the course of research and development,
where one one may have to study the impact of a
given structure under varicus iuipact conditions.
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