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SMOOTH INDENTATION OF AN INITIALLY
STRESSED ORTHOTROPIC BEAM

C. T. SuN AND B. V. SANKAR

School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN 47907, U.S.A.

(Received 29 July 1983; in revised form 23 April 1984)

Abstract—The contact behavior between a smooth rigid cylinder and a simply supported or-
thotropic beam under uniaxial initial stresses is studied. The displacements are computed by
superposing Mindlin plate solution with the solution obtained from Biot’s theory of incremental

" deformation. Finite Fourier transforms are used in solving the equations. A point matchmg
technique is used to compute the contact stresses and the amount of indentation for a given
contact length. The effects of orthotropy and initial stresses on the contact stress distribution
are investigated. An indentation law is established from the numerical results.
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NOTATION

Fourier coefficients

elasticity solution constants

incremental stiffness coefficients

semi contact length - -

elastic constants of the orthotropic medium
Young’s moduli
Shear modulus
beam thickness
square root of —1
transverse shear correction factor

dimensionless contact coefficient

half length of beam

transform variable

initial stress resultant

load distribution

total load

exponent in indentation law

magnitude of jth pressure distribution

radius of indenter

magnitude of initial stress in the x-dlrectlon

incremental stress components in Biot’s theory

horizontal displacement

vertical displacement

vertical displacement at the center :
vertical displacement of jth point due to kth load distribution of umt magmtude
horizontal and vertical coordinate axes .

indentation

incremental shear strain

incremental normal strains

slope of deflection curve at the supports (calculated from beam theory)
principal elongations due to initial stresses

Poisson’s ratios

transform variable (= nw/L)

roots of the characteristic equation

incremental normal stresses

incremental shear stress

beam rotation in the xz plane

local rotation of a material element

o

1. INTRODUCTION

The problem of smooth indentation of an isotropic beam by a rigid cylinder was studied
by Keer and Miller [1]. Their method superposes an infinite layer solution derived
through the use of integral transforms with a pure bending beam theory solution. The
problem is reduced to a Fredholm integral equation of second kind, which is solved
numerically. Keer and Ballarini [2] used a similar method as above to solve the problem
of contact between a rigid indenter and an initially stressed orthotropic beam. The
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Indentation of an initially stressed orthotropic beam 163

indentation. Moreover, an impacted structure may be under a state of initial stresses
during foreign object impact, e.g. composite facing of a sandwich beam under bending
loads, jet engine fan blades subjected to centrifugal forces. In such situations the meth-
ods of analysis presented here will be very useful. It is shown that the Young’s modulus
in the transverse direction and also the initial stresses in the beam can significantly
alter the local contact behavior.

2. AUXILIARY PROBLEM

The problem to be discussed in this section is depicted in Fig. 1. The beam material
is assumed to be orthotropic with the material axes of symmetry parallel to the co-
ordinate axes. The width of the beam (in the y-direction) is assumed to be unity. Uniform
initial stresses of magnitude S, are assumed to be present in the x-direction. Also, the
beam is supposed to be simply supported. The case of clamped ends can be treated in
an analogous manner. The load p(x) is arbitrary, but assumed to be symmetrical about
the center of the beam. The function p(x) can be expressed in the form of a complex
Fourier series in the interval —L to +L. Thus,

P = .
PW =3+ I aenm (m

n= —w

n#0

where P is the total load given by
+c
P " pear

and a, are the Fourier coefficients expressed by the formula
— i f+L ( )e;inwx/L dx : . (2)
n = 2L J-L pix ’ _ o

Actually, the load p(x) can be considered as the sum of two types of loadings, namely,
an U.D.L. of intensity P/2L and a varying part p;(x). Thus eqn (1) may be- written as

- P
plx) = o T i) ©)]
The methods of finding the displacements due to each part of the applied load are
discussed below. '

2.1. Deflection due to U.D.L. .
We assume a state of plane-strain parallel to the x-z plane. The constitutive relations

z

Fig. 1. Orthotropic beam subjected to axial initial stresses and an arbitrary, symmetrical trans-
C . verse loading. N
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stresses referred to axes 1, 3 which rotate locally with the material. The local rotation
w is given by

W = %(w:x - u:z)

where u(x, z) denotes the horizontal displacement. The incremental strains for smail
incremental deformations are given by

€x = Usx, €3 = W,zy, VYxg = Wox T U,z (9)

Biot’s theory assumes that incremental stress-strain relations are linear as given below:

§11 By bis 0 €x
s33| = |Bar bz 0 €z . (10)
S13 . 0 0 Q3 Vxz

The stiffness coefficients By are generally functions of the elastic constants of the
original orthotropic medium and the initial stress .Sg. The details of derivation of these
coefficients are given in [4] and only the results are presented here.

Let A; and \; be the principal elongations in directions x and z due to the initial
stress So. Physically this means that an unit square in the x-z plane deforms into a
rectangle of dimensions \; and A3 due to application of initial stresses. We assume that
the material is linearly elastic and use the constitutive relations (4) to compute \; and
As. The incremental elastic coefficients B;; are expressed in terms of the elastic coef-
ficients of the original orthotropic medium and the principal elongations \; and \, as

By = MCiy

Bss = M\sCss
B3 = So + MCis (1
Bis = MCis

0s = Css(\y + As)/2.

It may be noted that B;; is not equal to Bs;. This is because of lack of symmetry in
the initial stress state.

Using the incremental stress-strain relations (10) and the strain-displacement rela-
tions (9), equilibrium equations (8) can be reduced to the following form:

Atz + Aol + Asw,xz = 0 - (12)
AgW, oz + AsW, e + Asil,; = 0 '
where

A = Bll

A2 = Q3 - So/2

A3 = B31 + Q3 - S0/2

Ay = B33

A5 = Q3 + So/2

One can note that the equations of equilibrium (12) are similar to those for an orthotropic
medium without initial stresses, except that the elastic constants are modified by the
presence of initial stresses.
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where
¢ = nm/L.

The solution of the above system of ordinary differential equations consists of com-
plementary functions involving four arbitrary constants and particular integrals as given
below.

¢ S)
wn, 2) = >, berts — 7 cos nm

= € 1)
k71 pifz _Z_Q — ﬁ
u(n, 7) = 121 deP® + 7 <z 2) cos 1

where p;s are the roots of the characteristic equation

(A20% — A1) Asip

=0,
Asip (Asp® — As)

b;s are arbitrary constants, and the éonstants d; are related to b; by

A3ipi

di = ————-
(A — Azp?)

b;.

To evaluate the constants b; we make use of the boundary conditions (13). The boundary
conditions are first expressed in terms of displacements by using the incremental stress-
strain relations (10) and strain-displacement relations (9). Then by taking transforms
and substltutmg for # and w from eqn (17), we obtain the following s1multaneous equa-
tions in b;s:

4
. AsBs,
- ngh _——— . =
2 piC <A4 A] — A2p12> bl 0
Ay + (A3 — Ay)p?
-g A — Azpz2
é epig;,Al + (43 — Ay)p?

i=1 AI - AszZ

bi=0

bi=0.

The above equations are solved for b;s and substituted back in eqn (17) to determine
W(n, z). By taking the inverse transform we obtain

40
wx, 2) = wo(z) + >, W(n, )e™x,

n= —w
It can be shown that W(n, z) = W(—n, z) and the solution reduces to

w(x, 2) = wo(z) + 2 >, W(n, z) cos nmx/L. (18)

n=1

To evaluate the term wo(z), we make use of the boundary condition w(L, z) =
Equation (18) gives the displacements due to load p;(x). The final solution is the sum
of the deflection due to U.D.L. given by eqn (7) and that given by eqn (18).
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and

m

Wi = > Wirgk. 21)
£=1

From eqns (19-21) we obtain

m

> (woe — widge = G12R, j=1,...,m (22)

k=1

The quantities wo, and w;, are displacements due to unit stress distributions over known
spans and they may be computed using methods discussed in Section 2. The m si-
multaneous equations (22) may be solved for the m unknown gs. From the contact
stress distribution other quantities of interest such as total load, vertical displacements
and the amount of indentation may be computed. By varying the contact length 2c, a
whole series of load-indentation relations may be developed.

. The optimum number of divisions m depends upon the contact length and also the
stress gradients. For example, in the beginning of indentation, contact stress distri-
bution is nearly elliptical. So, even a small number of divisions yield converging results.
As the contact length increases, there is a peaking of stresses at the ends of the contact
zone and it requires larger number of divisions to get more accurate results. In the
numerical examples m was varied from 10-40 depending on the contact length. The
results obtained using the point matching technique are presented in Section 4.1.

3.2. Method of assumed stress distribution

As will be discussed later, for small contact lengths (e.g. ¢/k < 0.5) the contact stress
distribution may be represented by an ellipse; i.e. the stresses under the indenter are
given by

p(x) = po(l — x*c?)"2. 23)

In the above equation c is the semi contact length and po is the maximum value of the
stress at the center. As before, we start with a known contact length 2c leaving po as
an unknown. Then we assume a similar stress distribution with some arbitrary po, say
po, and compute the vertical displacements of the points in the contact zone. The
average radius of curvature of the indented surface R’ may be calculated using the
relation

where m is the number of reference points over the contact length; x; is the x-coordinate
of jth reference point; wy is the vertical displacement of the center point; and w; is the
vertical displacement of the jth point. Generally, R’ will be different from the radius
of the indenter R. But, the displacements vary linearly with the load and hence the
peak stress po required to produce a radius R is given by

PoR = poR’

The desired load distribution is then given by eqn (23). The vertical displacements and
indentation may be calculated using the methods explained earlier.

4. RESULTS AND DISCUSSIONS

The numerical results presented in this section were obtained by using the assumed
stress distribution method for ¢/2 = 0.2 and the point matching technique for c/h =



Indentation of an initially stressed orthotropic beam 171

.8000

.6000

cp/P

.3000

0.0000 ' ' il
0.000 .250 . .500 .750 1.000

Fig. 4. Contact stresses in beam 2 (E3/E; = 1/15).

Actually the discretized stress distributions obtained through the use of point matching
technique are smoothed out in the figures. From Fig. 3 it can be seen that the nondi-
mensionalized contact stresses are close to the results of the isotropic beam given in
[3]. For small contact lengths (c¢/k < 0.6) the contact stress distribution is nearly el-
liptical. On further indentation, the stresses in the central portion of the contact zone
decreases whereas there is peaking of stresses at the ends. As the beam wraps around
the indenter (e.g. ¢/h = 4), the contact stresses in the central portion becomes zero.
This behavior has been the discussion of [1] and [3].

‘From Fig. 4 it may be seen that a reduction in Young’s modulus E3 does not affect
the nature of contact stress distribution at the beginning of indentation. Even for large
c/h values, the deviation from the elliptical distribution is less when compared to beam
1. But opposite is the case when E; is increased. Figure 5 shows that in beam 3 (Es/
E, = 15) deviation from the elliptical stress distribution starts earlier and also, the
peaking of stresses is more severe. The conclusion is that the local indentation behavior
very much depends on E5 whereas E; controls the wrapping behavior and is responsible
for the peaking behavior discussed earlier. ’
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Fig. 5. Contaqt stresses in beam 3 (E;/E; = 15).
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Fig. 8. Load-indentation relation (no initial stresses, a: indentation).

4.1.4. Indentation law. As can be seen from Fig. 8, the amount of indentation
increases with the load up to a certain point and then starts decreasing with increasing
load. This is due to the distribution of load over larger contact area at higher loads. It
may be noted that the initial portion of the load-indentation relation, where the bending
is not much in effect, may be approximated by a power law of the type

p* = k‘*a*q'

where
P* = PRLIE,I® ]
a* = a/h A
g = exponent of the indentation law
k* = dimensionless contact coefficient.

Least squares fitting of the data shown in Fig. 8 gives an average value of ¢ = 1.18.
The values of £* are tabulated in Table 2. From this table it is obvious that the transverse
Young’s modulus E; has more effect on k*. In general, k* is-a function of the elastic
constants of the beam material and radius of the indenter. The exact functional form
has not yet been found out.
4.2. Effect of initial stresses on contact behavior

Beam 1 which is nearly isotropic is considered in the study of the effect of initial
stresses on contact behavior. The idea is to distinguish between the initial stress effect
and that due to orthotropy. Both tensile and compressive initial stresses along the x-
direction are considered.

Table 2. Indentation law constants for the three orthotropic materials °

Beam 1 Beam 2 . Beam 3

E3/E] 0.9 1/15 15

k SR T 17.24 © 1638
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Fig. 12. Load versus indenter displacement for beam 1 under initial stresses.

4.2.1. Contact stresses. Figure 9 shows the stresses under the indenter for various
c/h values when the beam is under initial tension. Again, for small ¢/h values the stress
distribution is elliptical. But for higher c/A (e.g. c/h = 4), the stresses in the central
portion of the contact area do not become zero (¢f Fig. 3), but remain at a constant
value. This contact stress is necessary to equilibrate the vertical component of the
initial stresses in the bent beam. In fact, this constant value of stress is found to be
nearly equal to NY/R, where N? is the initial stress resultant and R is the radius of the
indenter.

Curves in Fig. 10 depict the contact stress distribution when the initial stresses are
compressive. At the beginning of indentation, as expected, the contact stress distri-
bution is elliptical. But at higher contact lengths (e.g. c/z = 4), the contact stresses at
the center become negative, implying tensile stresses. As in reality such negative con-
tact stresses cannot exist, this suggests possible loss of contact and redistribution of
contact stresses. The present analysis is not valid beyond this point and we may have
to resort to a trial and error method for an exact analysis.

4.2.2. Load-contact length relations. Figure 11 shows the load-contact length re-
lationship for various values of initial stresses. At the beginning of indentation, when
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Fig. 13. Load-indentation relations for beam 1 under initial stresses.



