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This paper describes the development of an efficient finite element model for dynamic 
analysis of laminated beams treated by a constrained viscoelastic layer. The finite element 
model is designed so as to represent the viscoelastic core shear accurately. An offset-beam 
element which takes shear deformation into account and is specially suited for modeling 
such laminated beams is developed. The laminated beam and constraining layer are 
modeled by using the offset beam element. The viscoelastic core is modeled by using plane 
finite elements which are compatible with the beam elements. System damping and tip 
displacement are computed and compared with those measured experimentally by using 
the impulse-frequency response technique. Results show that dynamic response is 
improved by use of such damping treatments. 

1. INTRODUCTION 

The potential for the use of constrained viscoelastic layers in numerous dynamic applica- 
tions has motivated the authors to develop an accurate and efficient method to estimate 
damping in such structures [l]. Considerable work has been done in the past few years 
to analyze constrained viscoelastic layer damping. Early work in the field can be found 
in the work of Ross, Ungar and Kerwin [2]. Plunkett and Lee discussed the optimization 
of constrained viscoelastic layer damping for beams [3]. They assumed in their analysis 
that the treatment is always symmetric and that the base structure is perfectly elastic. 
While this is reasonable for metals, fiber-reinforced plastics are known to have much 
higher loss factors. Results from this work show that consideration of the loss factor of 
the base structure is essential for accurate modelling of high-damping composites. 

More recently, finite element techniques have been used to address this problem [4-61. 
Most of the work done so far is on damping treatment applied to metals. Advanced 
fiber-reinforced composites are prime candidates for several interesting applications where 
damping is a key parameter. Improvement of damping characteristics of these materials 
makes them even more attractive. Since most composite structural elements in military 
and space applications are subject to severe dynamic loads, additional vibration control 
becomes necessary. This can be achieved by using damping treatments. 

High damping in a structure can often improve performance in a dynamic load 
environment. Efficient methods for predicting damping in a structure are required, so 
that means of increasing damping by design can be explored. Johnson er al. and Brockman 
have discussed some of the finite element modeling techniques that are currently popular 
for modeling structures containing viscoelastic materials [7,8]. 
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Much of the problems in analyzing damping in structures is due to complicated 
geometries; it is therefore natural to look to finite element solutions. The method con- 
sidered here makes use of the correspondence principle of viscoelasticity. When applied 
stresses are not too large, the composite and its constituent materials exhibit linear 
viscoelastic behavior. For such materials, due to the correspondence principle, the Young’s 
modulus and shear modulus can be treated as complex quantities. The real part is called 
the storage modulus and the imaginary part the loss modulus. 

The direct frequency response technique [7] was used for the analytical estimation of 
damping and tip displacement. Experimental measurement of damping was done by using 
the impulse-frequency response technique. In composite base structures, several factors 
influence system response. For example, the stacking sequence in the base structure, and 
the location, amount and type of treatment influence the response strongly. The influence 
of some of the parameters is presented here. 

2. FINITE ELEMENT ANALYSIS 

The finite element method was used to evaluate damping in the structure for different 
lengths of treatment of the constrained viscoelastic layer. The arrangement used for 
modeling the three layer sandwich is shown in Figure 1. 

L 

Figure 1. Typical finite element mesh. 

The base structure and constraining layer were modeled by using a specially developed 
three-node, seven-degree-of-freedom, offset beam element. The element is shear-deform- 
able, which is significant for fiber-reinforced composites. A key feature of this element 
is its ability to account for coupling between stretching and bending deformations. This 
allows for the beam nodes to be offset to one surface of the beam, coincident with the 
nodes of the adjoining element. The viscoelastic core is modeled by using a rectangular 
plane stress element that is compatible with the offset beam element. 

2.1. OFFSET BEAM ELEMENT 

The element stiffness of the offset beam element shown in Figure 2 is formulated as 
follows. The displacement field is assumed as 

u(x, z) = u0+ (z - W2)WL 4% z) = 4x1, 44% z) = #(XL (1) 

c 4 

Figure 2. Offset beam element. 
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a0 and 4 are defined by using linear interpolation functions, 

u(x) =I(1 -x/L) xlJkl[u, &IT, tL(x) = [(I -x/L) xlL-l[th 421T, (24 

where u,, u2, I+$ and $2 are corresponding nodal displacements. w is defined by using 
quadratic interpolation functions, 

w=[ (;j;;z$!$jj kji (2b) 

where wi, w4 and w; are nodal displacements. (A list of symbols is given in the Appendix.) 
Strains are derived from displacements by using the strain-displacement relations, 

E, = au/ax = auo/ax + z all/ax, yxZ = au/az +aw/ax = t+l~ +aw/ax. (3a, b) 

The strain energy density is given by 

&= KX,+ ~CSSYfZ. (4) 

C,, and C,, are constants from the constitutive equations. The total strain energy in the 
element is given by 

IY=[ CJOdu=[OL’[;;i U,,dxdz. (5) 

By using equations (2)-(5), the strain energy in the element can be reduced to U = 
{d,}T[ &I{ d,}/2, where, {d,} is the vector of the elemental D.O.F., and {K,} is the element 
stiffness matrix. 

The calculations involved are lengthy but straightforward and are not presented here. 
The consistent mass matrix is evaluated similarly from the kinetic energy of the system. 
This element lends itself readily to efficient analysis of such sandwich structures. 

3. MODELING AND SOLUTION TECHNIQUES 

As mentioned before the base structure was modeled by using the three-node shear- 
deformable beam element. Typically, 20 elements are used to model the beam. Very large 
aspect ratios are common for elements used to model the viscoelastic core. Values as 
high as 5000: 1 have been used successfully, and are sometimes even necessary, since the 
viscoelastic core is only two mils thick [7]. Aspect ratios up to 200: 1 were used in the 
present study. To validate this formulation, several calculations were made to determine 
natural frequencies and tip displacement of simple systems, closed form solutions to 
which are easily derived. 

The loss factor was evaluated by using the direct frequency-response technique. In 
this method, a forced vibration at a known frequency is considered. System displacements 
are obtained by solving a system of complex-valued linear equations. The frequency- 
response spectrum is obtained by plotting amplitudes over a range of frequencies. The 
loss factor, a measure of damping, obtained from the real part of the response. This 
technique, although not the most efficient, was used for two reasons-simplicity and the 
relative small size of the problem in question. 

The modeling method used is reasonably efficient. A three-layer structure is modeled 
with only two layers of nodes. This technique can be easily extended to two-dimensional 
problems. However, alternative methods for determining system loss factor will have to 
be used as the problem size increases [8]. 
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4. EXPERIMENTAL PROCEDURE 

The most common methods used to measure damping are the free vibration decay 
method, the resonant dwell method, the hysterisis loop method and the frequency- 
response technique. For the purpose of this research the impulse - frequency response 
technique was used [9]. This technique offers potential for rapid non-destructive evaluation 
of materials and structures. In the impulse - frequency response technique, the specimen 
is excited impulsively with a controlled-impact hammer which has a force transducer 
attached to its head. The specimen response is sensed by a non-contacting eddy current 
proximity probe. The signals from the force transducer and the motion transducer are 
fed to a Fast Fourier Transform (FFT) analyzer which displays the frequency spectrum. 
A block diagram of the instrumentation is shown in Figure 3. By analyzing the resonant 
peaks for a particular mode, the loss factor, a measure of damping, is obtained from the 
real part of the response spectrum, as explained in Figure 4. In this research the improved 
technique of Suarez and Gibson [9] was used. One of the features of this improved 
technique is that the excitation level is accurately controlled; therefore, the amplitude of 
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Figure 3. Flexural vibration apparatus. 
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Figure 4. Real part of the response spectrum. Loss factor = [ 1 - (fJf.)*]/[ 1+ (fJf,)]*. 
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vibration of the specimen can be reduced to a minimum (thereby reducing air damping 
to a minimum). Also, the response function, which is identical in shape to the transfer 
function after ensemble averaging, can be used for damping measurements [9]. 

5. MODEL VERIFICATION 

The finite element model was verified by considering a sandwich cantilever beam with 
a viscoelastic core. This problem has been studied extensively in previous studies [5]. 
Calculated resonant frequencies and system loss factors are compared with the finite 
element solution of Soni and Bogner [5] and a sixth order beam theory solution [lo]. 
The geometry of the beam is shown in Figure 5. For the purpose of comparison, a 
hypothetical damping material with frequency and temperature invariant properties, 
similar to the one considered by Soni [5], is used. The material properties of the sandwich 
beam are given in Table 1. 

Aluminium facing 

Vi.scoelostiicore 

Figure 5. Sandwich beam. Length 1773 mm, width 25.4 mm. 

TABLE 1 

Material properties for sandwich beam 

Aluminum 
Viscoelastic 

core 

Thickness (mm) 1.524 0.127 
Young’s modulus (GPa) 69 0*002 1 
Poisson ratio 0.3 0.499 
Loss factor 1.0 
Specific gravity 2.8 o-97 

The damped frequencies and corresponding modal loss factors from the present finite 
element analysis are compared with those from previous analyses [5] in Table 2. The 
values of the damped resonant frequencies and the system loss factors are in good 
agreement. In the present model, a total of 80 active degrees of freedom was used to 
model the sandwich beam; Soni and Bogner employed 440 active degrees of freedom in 
their model. The direct frequency-response method explained earlier was used to calculate 
modal damping. 
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TABLE 2 
Model comparison 

Loss factor Frequency (Hz) 

Present 6th order Soni Present 6th order Soni 

Mode 1 0.1997 0.2022 0.2019 67.5 67.4 67.4 
Mode 2 0.2117 0.2177 0.2180 298.1 302.8 307.0 
Mode 3 0.1452 0.1502 0.1500 752.8 748.6 762.0 

6. RESULTS AND DISCUSSION 

Two different materials are considered for the purpose of analysis. M&I&I 1 is a 
hypothetical material with low modulus and high loss factor typical of off-axis composites. 
Typical glass-epoxy data was used for material 2. The material properties of material 1, 
glass-epoxy and the soft aluminum constraining layer are given in Table 3. For all cases, 
the damping tape used was 3M’s SJ2052x, a class of constrained viscoelastic damping 
tape. For this tape, the viscoelastic layer and the aluminum constraining layer are O-127 mm 
and 0=254mm thick respectively. The shear modulus and loss factor of the damping 
material, as a function of temperature and frequency, can be found in reference [ 111. 

TABLE 3 

Material properties 

v, (%) 50 50 - 
P (g/cm’) 1.90 1.90 2.76 
EL (GM 28 36 69 
ET (GW 8.8 8.8 69 
GLT (GW 3 3 26 
VLi- 0.28 0.28 0.32 
?L 0.01 0.004 0405 
VT 0.015 0.01 0405 

Material 1 Material 2 
Constraining 

layer 

Structural damping with and without add-on viscoelastic layer damping was evaluated 
analytically and experimentally for material 2. Results of the effects of different parameters 
such as the quantity of treatment and the location of the treatment on the overall damping 
of the system are presented. Three different unidirectional composite specimens were 
tested, and the average measured loss factor was used as input data to the finite element 
model. The same specimens were also tested after application of the damping treatment. 
Each specimen was 203 mm long and 3.6 mm thick. 

In Figure 6 is shown the magnitude of the response as a function of the frequency of 
the forced vibration for three different lengths of treatment for material 1. The change 
in system response due to addition of the viscoelastic material can be seen from the figure. 
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b/L = 0.4 
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Figure 6. Response spectra for different lengths of treatment. Material 1, a/L = 0. 

Displacement is plotted in meters, per Newton of applied force. Large reductions in 
response amplitude can be seen due to application of the damping tape. 

The variation of loss factor with tape length for material 1 is shown in Figure 7. For 
mode 1, the loss factor increases rapidly from b/L = 0 to b/L = 0.6, after which it shows 
a slight drop. The existence of a tape length, b, for which b/L < 1 and damping is optimal 

0,06 c 

0 0.2 0.4 0.6 0.0 1 
Tape length /beam length 

Figure 7. Variation of loss factor. Material 1, a/L = 0. 

is significant. This result shows that shear deformation of the viscoelastic core is the 
primary source for energy dissipation. For lengths greater than the optimal value, the 
deformation of the viscoelastic core follows the extensional deformation of the surface 
of the beam. The trend observed for mode 2 is different from that for mode 1. While 
treatment closer to the root of the beam seems to have the greatest effect on mode 1, the 
center of the beam seems to be the optimal location for mode 2. This suggests that 
application of damping material to the points of high strain energy density yields best 
results. These results are also evident from Figures 8 and 9 which show the variation of 
system loss factor with tape length, for different locations of the damping treatment for 
mode 1 and mode 2 respectively. 

The analytical and experimental results for the CO],, glass-epoxy laminate (material 2) 
are presented in Figure 10. Good agreement between the data is seen for both mode 1 
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Figure 8. Effects of location on loss factor (material 1, mode 1). 
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Figure 9. Effects of location on loss factor (material 1, mode 2). 
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Figure 10. Analytical and experimental results for material 2; a/L = 0.0. Experimental results: 0, mode 1; 
A, mode 2. 
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and mode 2. Analytical and experimental results project similar system behavior for 
varying amounts of damping treatment. The loss factor of the base structure is small for 
material 2 as compared to material 1. However, the change in system loss factor with the 
application of damping tape for both systems is about the same. For material 2, neglecting 
the base structure loss factors would yield reasonable results for system response, but for 
material 1 (as is true for most composite materials) the base structure loss factor cannot 
be neglected. 

The variation of tip displacement at resonance with amount of treatment for materials 
1 and 2 is shown in Figures 11-14. For both materials the vibration amplitude is seen to 
reduce dramatically with increasing amounts of damping treatment. As can be seen from 
the damping curves, the presence of an optimal length and location for a given structure 
and loading condition is evident. It can also be seen that treatment closer to the root of 
the beam will have a stronger influence on system response for mode 1, while treatment 
located away from the root of the beam has a stronger influence on mode 2 response. 
Several other factors, such as the thickness of the damping layer and the type of damping 
treatment, also affect the system response strongly. 
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Figure 11. Variation of tip displacement; material 1, a/L = 0.0. 
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Figure 12. Effect of location on tip displacement; material 1, mode 1. 
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Figure 13. Effect of location on tip displacement; material 1, mode 2. 
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Figure 14. Variation of tip displacement; material 2, a/L = 0.0. 

7. CONCLUDING REMARKS 

On the basis of the numerical and experimental results presented, it is seen that the 
finite element model presented is an accurate and efficient representation of a sandwich 
beam and that viscoelastic surface layer treatments can be used to improve significantly 
the dynamic response of structures. Increases in overall system damping and large 
reductions in response amplitudes are achieved by using damping treatment. Results also 
show, for each mode of vibration, that there exists a length, location and a thickness of 
the damping tape, for a given thickness of the constraining layer, for which the overall 
system damping is maximized. 

In future the work will be extended to accommodate the effects of continuous variation 
in cross-section (this is already possible with a little modification), pre-stress, initial 
twisting and rotation on the system response. 
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APPENDIX: LIST OF SYMBOLS 

distance of damping tape from support 
length of treatment 
vector of elemental degrees of freedom 
extensional modulus 
shear modulus 
giga Pascal 
thickness 
Hertz 
stiffness matrix 
length 
mass matrix 
pounds per square inch 
extensional displacement 
strain energy 
fiber volume fraction 
deflection 
shear strain 
extensional strain 
loss factor 
Poisson ratio 
density 
normal stress 
shear stress 
rotation 
frequency 


