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ABSTRACT: The problem of dynamic delamination growth in composite beams is ana-
lyzed using finite element method. The delaminated beam is modeled as two beams above
and below the plane of delamination. Spring elements are used to connect the beams in the
uncracked portion. The dynamic energy release rate is calculated from the strain energy
in the crack-tip springs. The crack is allowed to propagate when the energy release rate
reaches a critical value estimated from experiments. The crack growth histories are com-
pared with results from tests on composite beams containing implanted delaminations.
The finite element model is found to be adequate in predicting dynamic delamination
growth in laminated composite beams.
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INTRODUCTION

IBER COMPOSITES ARE-mostly used in the form of laminates, which are
susceptible to delamination during fabrication or service. A delamination
may propagate under static, fatigue or dynamic loads for which the structure is
designed, as well as due to dynamic loads caused by unexpected impact events.
Environmental factors such as temperature may also increase the chance of
delamination growth. Frequent nondestructive inspection of composite structures
can be expensive, hence it may be necessary to allow for the existence of some
delamination type cracks in the structural design. The objective of this study is
to develop a simple finite element procedure for modeling delaminations in lami-
nated composite beams, and to predict their growth in dynamic loading environ-
ments. The model is verified by comparing with some available experimental
data, and also by performing impact tests on laminated beams with implanted
delaminations.
Dynamic fracture is still considered a formidable problem because computa-
tion of appropriate dynamic fracture parameters such as stress intensity factor
(K), dynamic energy release rate (G), or the elastodynamic path independent
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integral (J’) is very difficult due to the inertial and stress wave effects, and mea-
suring the critical values of those parameters as a function of crack velocity is not
a trivial experimental task. A general discussion of the mechanics of dynamic
crack growth, various analytical methods of evaluating dynamic crack parame-
ters, and a review of numerical methods can be found in Reference [1]. Grady and
Sun [2] performed impact tests on graphite/epoxy beams with implanted delam-
inations. The delamination crack propagation was recorded using a high-speed
camera. The crack-tip position, and hence the crack velocity, was measured as a
function of time. Plane finite elements were used in the analysis, and the energy
release rate was computed using the crack closure integral method. The analysis
results were used to predict the critical energy release rate for the initiation of
delamination propagation.

Kanninen [3,4] has developed various elastic foundation spring models for
dynamic analysis of unstable crack propagation and arrest in DCB specimens.
The advantage of the method lies in its simplicity in.computing energy release
rate as a function of time. The difficulty is in evaluating suitable foundation
parameters for orthotropic as well as laminated composite materials.

Numerical methods based on finite elements and finite differences have been
found to be very convenient in the analysis of brittle dynamic fracture of struc-
tures of complicated geometries [5,6]. The advantages of numerical methods are:
crack propagation can be simulated by releasing the crack tip nodes gradually;
singular crack tip elements can be used to improve the accuracy of stress intensity
factors; and path independent integrals can be easily evaluated. Farris and Doyle
[7] used the wave-guide analysis for a beam containing a finite crack. They used
the zero-volume path independent integral to compute the dynamic J’, and the
stress intensity factors. The accuracy of the approach was demonstrated by com-
paring with the two dimensional analysis.

In the present study finite elements are used to compute the dynamic energy
release rate in a laminated composite beam. A beam element with nodes offset to
one side, either top or bottom, is used to model the two portions of the beam
above and below the plane of delamination. The offset beam element has the ad-
vantage of allowing crack propagation without renumbering the nodes, and more
importantly, is convenient in modeling the partial contact and slip at the
delamination interface. The top and bottom portions of the beam can be con-
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Figure 1. Beam finite element with offset nodes.
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nected either by foundation springs or rigid elements as will be described below.
The energy release rate has been calculated using three different methods: (1)
zero-volume J'-integral; (2) a crack closure method for beams; and (3) the strain
energy in the crack-tip springs. The crack propagation can be studied using a
fracture criteria, such as G = G. for crack growth, where the critical strain
energy release rate G, has to be measured from suitable experiments. The follow-
ing sections describe the development of a composite beam finite element, its ap-
plication in the analysis of dynamic delamination propagation, and experiments
to verify the numerical model.

FINITE ELEMENT MODEL

The beam element used in the present study (Figure 1) has three nodes. The
two extreme nodes have three degrees of freedom each, u, w and ¢, which are
the axial displacement, transverse displacement and rotation about the y-axis, re-
spectively.. The central node is assigned w degree of freedom only. Thus the vari-
ation of w-displacements are quadratic, whereas u and y vary linearly. The dis-
placements are interpolated as

W(x) = WlNl(x) + WzNz(x) —+ W3N3(x) (1)

#(x) = wNax) + wNs(x) @)
Y(x) = YiNa(x) + YaNs(x) 3

where Ny(x) = (1 — 2x’) (1 —x’), Nox) = 4x'(1 — x’), Ns(x) = x’
@x" = D,Ne= (0 — x’), Ns = x',x’ = x/L, and L is the element length.
The equations of motion for the laminated beam are: .

d[d
beSSE(—d% + ¢) +p =0 @
a d hod n
bDy S5 ¥ — xbAss (Ew + w) £ DAy, Eﬁ(u + 7‘0) =0 (5
bAugg(u + —hgi) +1tx) =0 6)

In the above equations, b and # are the beam width and thickness, p(x) and z(x)
are the distributed transverse and axial forces acting on the beam, and the =+
signs correspond to beams with nodes offset to bottom and top side respectively.
As1, Ass and D,, are conventional laminate stiffness coefficients, and » is the
shear correction factor. It is assumed that there is no extension-twisting or
bending-twisting coupling in the laminate. -

The stiffness and mass matrices can be derived by using the Galerkin method.
The non-zero elements of the stiffness and mass matrices are given in the Appen-
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dix. It should be noted that some of the terms in the stiffness and mass matrices
are different for the top and bottom elements. In the Appendix they are denoted
by a = sign. If we add the stiffness or mass matrices of the top and bottom ele-
ments, we recover. the corresponding matrices of a conventional beam element
with nodes at the midplane. In some applications the middle node can be
eliminated by static condensation, and we will have 6 X 6 stiffness and mass ma-
trices [8,9].

The performance of the offset beam element was evaluated by considering sev-
eral static and dynamic problems. In the dynamic case, both free vibration and
transient problems were considered. In spite of the fact that exact integration was
used in computing the stiffness matrix, there was no shear locking, because of the
choice of different order of interpolation functions used for transverse displace-
ment, axial displacement and rotation. The details of the derivation of the
stiffness and mass matrices, and evaluation of the offset beam finite element can
be found in [10].

MODELING DELAMINATIONS

In modeling dynamic crack problems we will assume that there is a single
dominant delamination crack in the beam, and also the crack will propagate in
a self-similar manner. Thus possibilities of crack branching are ignored in the
present study. Experimental studies [2] indicate that this is a valid assumption.
We will assume brittle fracture behavior, and use the principles of linear elastic
fracture mechanics in the analysis. The beam can be assumed to be made up of
two sublaminates one above and the other below the plane of delaminations. The
top portion above the plane of delamination is modeled by elements with nodes
offset to the bottom side, and the bottom portion by elements with nodes at the
top. In order to connect the top and bottom portions, two types of connecting ele-
ments are used. In the first approach, three spring elements, a transverse spring
(k.), an axial spring (k.), and a torsional spring (k,), are used to connect the ex-
treme nodes. The middle node in an element is connected to a transverse spring

-only. The stiffness matrix of a spring element, for example transverse spring, is

of the form

kw - kw W1
(k] = ; - @
- kw kw W2

In the second approach the top and bottom portions of the beam were con-
nected by a rigid element that ensures continuity of transverse displacement,
axial displacement and rotation. Alternatively one can have common nodes in the
undelaminated portion.. This is equivalent to using a single beam element in the
uncracked portion. The rigid element connection is convenient in modeling static
crack problems or dynamic problems with stationary cracks, as the energy
release rate can be directly computed from the forces transmitted by the crack-tip
rigid element [8,9]. A gap element was used in the delaminated portion to moni-
tor contact between delaminated surfaces. In the examples considered contact
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forces between the sublaminates were found to be very small, and hence fric-
tional forces between delaminations were neglected

In the present study energy release rate is used as the crack propagatlon crite-
rion. For a dynamic problem this can be expressed as [4]

d
G=gzW-U~T) (8)

where W, U, and T are work done by external loads, elastic strain energy, and
kinetic energy in the beam respectively, and A4 is the area of the crack surface.
Three methods were used to compute energy release rate. In the case of spring
model, the energy release rate is simply the sum of strain energies per unit length
in the crack-tip springs [10]. This can be calculated from the differences in the
displacements and rotation of the top and bottom nodes at the crack tip and the
spring constants %, , k, and k,. The other two methods pertain to the rigid element
connection at the crack-tip. The second method is the zero-volume path integral
[7], which is a function of the bending moment, shear and axial force resultants
in the sublaminates attached to the crack-tip [8,9]. This can be written as

G=UMW + U% — [y - &= (9)

where U? is the strain energy per unit length in the ith sublaminate connected
to the crack-tip (see Figure 2). The third method is a crack closure technique de-

“veloped for offset beam finite elements [8-10]. This is similar to the conventional

crack closure method, except now the nodal forces are the bending moment,
transverse force and shear force transmitted by the rigid element at the crack tip
node. The strain energy released is half the work done by these forces through the
differences in rotation and displacements of nodes behind the crack tip. It can be
shown that the zero-volume path integral and crack closure methods give identi-
cal results for energy release rate [8-10].

Tt should be noted that all the three methods are good for static problems as
well as dynamic problems with stationary cracks. For moving crack problems
one has to use only the spring model for the following reasons. In the case of
spring model, the crack growth is simulated by breaking the crack-tip springs.
Thus the strain energy stored in the spring, which is equivalent to the energy re-
quired to create new crack surfaces, will be removed from the system, and hence
the energy balance as given by Reference [8] will be satisfied. When using 2-d
and 3-d models for a moving crack problem the singularity at the crack-tip pro-
vides the necessary mechanism for energy dissipation. Whereas beam and plate
type elements do not possess singular behavior, and there is a need for an explicit
energy dissipation mechanism. In this context, the springs used in the present
model can be considered as cohesive springs or elastic springs that represent a
thin layer of epoxy in between the layers. The results for G were not very sensi-
tive to the spring constants as long as they are sufficiently stiff [10]. The choice
of appropriate spring constants for laminated composite materials requires fur-
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Figure 2, Crack-tip elements for zero-volume path integral.

ther studies. In the present study the spring constants were selected by trial and
error such that the value of G computed is equal to that obtained from the zero-
volume path integral method. The foundation spring-constants used by Kanninen
[3] provided a good starting value for the trial and error procedure.

NUMERICAL EXAMPLES

The proposed finite element model was verified by considering the example
given in Reference [2]. The beam properties, dimensions and loading are given
below for the sake of completion. A 20 ply [90,0], graphite/epoxy laminate is
modeled as a homogeneous orthotropic beam with elastic constants E, =E, =
72.4 Gpa, E; = 10.3 GPa, G, = 50 GPa, »,; = v = 0.33, »;;, = 0.025, and
mass density o = 1.58 x 10 N-s%cm®. The beam dimensions are
173 X 25 x 2.5mm. The beam is fixed at one end and the other end is free. The
initial delamination is 25.4 mm long and its center is at 102 mm from the fixed
end. The delamination is at the midplane of the beam. The impact force is ap-
plied at a point 130 mm from the fixed end. The impact force is taken as [2]

F@&) = 1530 sin (x2/125 us)N, 0 < ¢ < 125 s
=0,1> 125 us

The flexural deflection at the left crack tip for the above example obtained using
the present method is plotted in Figure 3. The agreement with the result of Refer-
ence [2] is very good. The strain energy release rate was computed using the
three methods described earlier, and they are shown in Figure 4. It was found [10]
that the energy release rate G did not vary very much with the spring constants
k, and k,. This indicates that Mode II behavior is dominant in the present prob-
lem. The results in Figure 4 were obtained with k. = 08Gy,bL/h, where L, b,
and A are the length, width and thickness of the crack tip sublaminates. It may be
seen that all the three methods provide the same G history for this stationary
crack problem. :
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DYNAMIC CRACK PROPAGATION—-COMPARISON
WITH EXPERIMENTS

The crack propagation is assumed to occur when G equals the critical value
G.. In the finite element model crack propagation is simulated by breaking the
crack-tip springs when G = G.. The stiffness matrix has to be modified for sub-
i sequent time steps. The average velocity of crack propagation is found by con-
sidering the crack advance over several time steps. Although G. has been
assumed to be a constant material property in the present study, in general crack
resistance increases with velocity [4]. In that case an iterative procedure has to
be used since the crack velocity is not known apriori. An estimated G. value has
to be chosen based on the average velocity assuming the crack will propagate to
: the next node. If the calculated G is less than G., then the crack propagation will
not have occurred.

The above described method was used to predict delamination propagation of
a test specimen given in Reference [2]. The dimensions and properties of the
beam were described in the previous section. The critical energy release rate was
assumed to be 350N/m as given in [2]. Comparison of experimental result and
present finite element prediction are shown in Figure 5. It is interesting to note
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Figure 3. Comparison of beam deflection.
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Figure 4. Energy release rate history from various methods.

that the finite element model is able to predict the intermittent crack arrest during
400 pus < t < 600 ps. The discrepancies in results after about 700 us can be at-
tributed to the fact that we have not accounted for increased crack resistance at
higher velocities. That is why the numerical model predicts a higher velocity
than the experimental results. '

A second set of evaluations of the model was done by performing pendulum
impact tests on glass/epoxy beam with implanted delaminations. The description
of the impact pendulum can be found in Reference [11]. The total mass of the im-
pact tup was 13.84 kg. A 6.25 mm diameter steel impactor nose was used. The
impact velocity, rebound velocity and impact force history were recorded using
electronic data acquisition systems. All specimens were cut from a 300 x 300
mm [0/90/90/0],, glass/epoxy plate cured in the autoclave. The properties of the
material were: E; = 37 GPa, E, = 11.54 GPa, G, = 3.46 GPa, v, = 0.285,
o = 1930 kg/m®. The specimen dimensions and location of delamination are
shown in Figure 6. The delamination was created by inserting a teflon strip in the
prepregs before curing. The specimen overhang on either side of the supports was
designed to be unequal to cause preferential crack extension to one side. A soft
rubber padding was placed on the specimen at the impact point to minimize local
indentation damage. :

The experimental results for six impact tests are presented in Table 1. The
results include impact and rebound velocities, maximum impact force, impact
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Figure 6. Beam used in impact tests (dimensions in meter).
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Table 1. Impact test results.

Impact/Rebound Max. Impact Impact Left/Right
Specimen Velocity * Force Duration Crack Extension

No. " (m/s) (N) (ms) (mm)

1 0.88/0.79 2060 32.26 69.6/2.4

2 0.99/0.69 1943 29.42 57.3/1.0

3 0.97/0.68 1926 29.56 57.3/1.2

4 0.94/0.66 1815 29.36 52.5/0.5

5 1.00/0.76 1677 30.87 54.9/1.6

6 0.95/0.62 2031 28.30 56.5/0.5

duration, extension of left and right crack tips. Sample impact force histories
from two impacts are shown in Figure 7. One of them is for a specimen in which
crack propagation did not occur.

The finite element model was used to predict crack extension in the test speci-
mens. The beam was modeled by 580 offset beam elements. The element length
in the vicinity of crack tips was 0.5 mm. The time step for Newmark integration
was 1 us. The impact velocity was 0.97 m/s corresponding to that of Specimen 3
in Table 1. The experimentally measured impact force history was applied to the

2.1

without crack extension

with crack
extension

Impact Force (kN)

Time (ms)
Figure 7. Impact force in beams with and without crack extension.
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model. The history corresponded to that of the failed specimen in Figure 7. The
G. value was taken as that computed at a time just before the load drop observed
in the impact test. The predicted crack extension history is shown in Figure 8.
From the results the crack extensions were 61 mm and 3 mm at the left and right
crack-tips respectively. Corresponding test results were 57.3 mm and 1.2 mm
(see Table 1). Thus the present finite element model is able to predict the final
position of the crack from the initial delamination description and load history.

Although the experimental impact force history was used in the numerical sim-
ulation, the impact force history can be computed by having a nonlinear contact
spring at the impact point. This step is important for developing 2 numerical
capability to predict crack growth in composite structures. Because of the
nonlinear contact springs, an iterative procedure has to be used in computing the
impact force at each time step [12]. When the impact mass is much larger, and
the target is more flexible than the contact spring, a simple spring-mass model
can be used to predict the maximum impact force and duration [2,10]. Then, the
sinusoidal impact force history can be applied to the finite element model to com-
pute G. If G. is known, then at least initiation of crack propagation can be pre-
dicted. This will be a useful design tool in estimating damage tolerance of com-
posite structures with known delaminations. This approach was used to predict
the impact force history for the beam shown in Figure 6, when delamination does
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Figure 8. Predicted crack growth history in a beam under impact.
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Table 2. Comparison of spring-mass model with test results.

Test Results Spring-Mass Model
Impact
Specimen Velocity Max. Force Duration Max. Force Duration
No. (m/s) (N) " (ms) (N) (ms)
7 0.75 1689 - 20.82 1518 21.48
8 0.97 2069 21.89 1963 21.48

not grow during impact. The flexural stiffness of the delaminated beam was com-
puted by solving the static problem using offset beam finite elements. For the
beam considered, the effect of delamination was to reduce the stiffness by about
20% . The expressions for maximum impact force and duration can be derived as
[10]

Fo = Vo \/MSK (10)
T =7n~NMJ/K . )

where M; is the impact mass, V, is the impact velocity and X is the beam flexural

stiffness. Comparison of spring-mass model predictions and experimental results
are shown in Table 2, and the agreement is very good.

SUMMARY

A novel beam finite element with nodes offset to either top or bottom side has
been developed to study the problem of delamination crack propagation in beam
type composite specimens. These elements are used to model the sublaminates
above and below the plane of delamination. The dynamic energy release rate is
computed from the strain energy stored in the crack-tip springs that connect the
undelaminated portions of the beam. The crack growth is simulated by breaking
the crack-tip springs whenever the energy release rate exceeds a critical value.
The model was evaluated by comparing with experimental results obtained by im-
pacting beams containing implanted delaminations. The finite element model is
able to predict crack growth history and final extent of delamination. The offset
nodes and the spring connections are convenient in modeling dynamic fracture as
node renumbering is avoided as the crack grows, and the procedure for computa~
tion of G is also very simple. This method can be used to evaluate impact damage
tolerance of composite structures containing delaminations.
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APPENDIX

The non-zero coeflicients of the (symmetric) stiffness matrix are: ky; =
7%bA55/3L, kn = —SZbA55/6, k14 - —beAss/BL, k15 = %bAss]gL, klﬁ =
—JfbA55/6, kzz = (4bD11/L) -+ L%bAss/?), k23 = :]:bhA“/ZL, k24 = 2Lk15,
kas = —kis, kas = —(@4bDy /L) + LbxAss!6, ky; = —kas, . kss = bA/L,
ka& = kz7, k37 = _kaa, ks = —2k14, k4s = k14, k45 = '—2k15, kss = kn,
kss = —kia, kes = kaa, ks7 = kas, ks7 = kss, Where L, b, and % are element
length, width, and thickness respectively, » is the shear correction factor.

The non-zero coefficients of the (Symmetric) mass matrix are: My, = 2m/15,
M14 = m/15, M15 = _m/30, Mzz = mhzf_g,/ M23 = :‘l’:mh/6, M25 - M22/2,
My = Mys/2, Ms; = mi3, Mys = My, Ms; = ml6, May = 4Myy, Mys = My, -
Mss = My, Mss = M, Ms; = Mas, M;; = m/3, where m is the mass of the
beam element.
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