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‘i Abstract

This paper presents some analysis techniques to estimate the passive damping ability of viscoelastically
damped, fiber—reinforced, polymer composite materials. The potential use of passive damping treat-
‘ments to further enhance the damping ability of composite structural elements is discussed. Experimental

comparisons are provided wherever possible.
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1. Introduction

The ability to tailor the properties of composite materials / structures to suit a specific re-
quirement has been recognized as a primary advantage gained by using composite materi-
als. The inherent damping ability of a composite material is one such property which can be
adjusted by varying the different fiber and matrix related parameters. Several automotive
and aerospace related applications of polymer reinforced composite materials require im-
proved damping characteristics from the materials. The loss in damping ability due to the
absence of such damping mechanisms is felt severely in, for example, space structures for
communications and space telescopes, where vibration due to maneuvering is an important
design concern. Active damping mechanisms may be employed to reduce this problem, but
the advantages of higher passive damping are obvious. Also, passive damping is necessary
"for structural stability. '
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2. Formulation of finite element equations
Finite element equations were developed by using the principle of incremental virtual work
[10]. In the current p}roblemA,' a sequence of two motions is considered to include the effect
of a static preload. The first increment is due to the application of known static preload,
and the second increment is due to a dynamic load superposed on this known static config:
uration. The total Lagrangian definition of motion is used where all static and kinematic
variables are referred back to the natural undeformed configuration. The formulation dis-
cussed here includes all kinematic nonlinear effects due to large strain and rotation, howev- -
er, the final equations are linearized so that both increments of motion, the part due to the
static load and the part due to the dynamic load are linear elastic. The formulation models
a stress stiffening effect which causes a change in the stiffness within the element.
Physically, it represents the coupling between inplane and transverse deflections within the
A structure, and is modelled as a higher order effect over the small deflection solution. The -
stress stiffening matrix is represented by an additional stiffness matrix, [K,]. Thé mecha-
nism is often used in flexible structures to increase the lateral load carrying capacity of
member.

Consider a body whose initial configuration is denoted by C, and in which cartesian
coordinates X; are assigned to a point in the structure. After subsequent deformation of
the body, the position of the same particle is given by, x;, in its current configuration C,.
" .This state is the intermediate state caused by a known preload. State C, is the final state
to be determined after the final increment of load is applied. The configuration in the final
state is actually evaluated by calculatihg the incremental solution between the states C,
and C, andupdatingthe C,; state deformation.

The principle of virtual work [10] in state « is written using indicial notation as,

.[ (aT;j5¢Ei}+ 0p,i2,-5u,~)dV=-[ ¢ﬁ~5u,-dV+J‘ atiau,'dA
vo - vo - Mo )

where

T;; = Piola — Kirchhoff stress tensor
E;; = Green’s strain tensor

fi =Dbody force '

t;~ =surface traction

u; = displacement

i; = acceleration
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predict the linear, damped, steady—state response of structures about a linear preloaded
equilibrium configuration. By following the finite element discretization procedure, the
equations governing the time dependent response of a prestressed body is obtained as

[K]+ [K U} + [MI{U} = {F}

where

[K] =global stiffness matrix
[K,]=global stress stiffening matrix
[M]= global mass matrix '
v} = global displacement vector
{U} =global acceleration vector

An excitation force, harmonic in time, is considered; that is,
F — fe it

where .@ is the forcing frequency, ¢ the time and i=(— 1)!/2. The response due to the
applied force is assumed to be harmonic and vibrating at the excitation frequency. The
equation of motion reduces to

K]+ K, T{ U}~ o (MU} = {
where [K] and {U} are complex valued.

[K]=[K]" {{1] + iln]}
{Uy={UV+i{U}"

Substituting into the above eqli‘ation and equating the real and imaginary parts, we have

(K] + KDY — K] [N{UY. — o> IM{UY = {#
(K1 + K D{UY +[K]" [){UY — *[M][U])" = {0}

"The matrix on the left—hand side is called the displacement impedance matrix. For each
frequency of excitat'iqn, the displacement per unit applied force is calculated by solving the
system of complex—valued simultaneous linear equations and the response function is

. thereby generated. The loss factor is calculated from the generated response spectrum by

using the half—power—bandwidth technique [11], or from the real part of the spectrum as
shown in Fig.1(b).
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(K] + (KUY = 0’ [MI{U}

_The natural frequencies and mode shapes are calculated about the initially stressed state for

- . the undamped system. The stiffness matrix and the cofresbonding nodal displacements are

real since only the real eigenvalue problem is solved. Modal damping is calculated by this
technique by using the modal strain energy method. This technique is valid only for systems -
with relatively small levels of damping where the mode shapes and frequencies of the
damped and undamped structure are similar, therefore, causing the fraction of strain ener-
gy stored m each element to also be s1mllar The system loss factor is calculated as the
weighted sum of the 1oss factors of each individual element, where the weighting factor i is
the fraction of the strain energy stored.-in the element. Due to the stiffening effect of the |
prestress a significant amount of energy will be stored in the beam due to an apparent
stiffness increase. The weighting factors have to be modified to account for this increase in
stored energy-since the dissipated energy per cycle does not change very much. The loss fae-
tor for vibration about prestressed conﬁguratlon is calculated by

n=2i2inEr / LiZE;s

‘where

n = total number of elements
n; =loss factor of the ith element v

E? =elastic strain energy stored in ith element calculated as 1/ 2{ u} Tkl{ u}

E;=sum of elastic strain energy and strain energy due to preload in the ith

element calculated as 1/ 2{u}7[k + k ,J{u} _

The modal strain energy based method is the most popular because .of the
computational efficiency of the method. A variation of the modal strain energy method has
been used [12] where the displacement impedance matrix, discussed under the direct fre-
quency response method, is solved over a range of frequencies to locate the resonant fre-
quency. The deflected shape at resonance of the damped structure is used to calculate the .
 strain energy fractions stored in thé eletnent. The accuracy of this result depends on factors
obviously and the computatlonal benefits of the method discussed earlier are lost Even
though an assumption of small damping is made in the formulation, accurate results have
been reported for core loss factors as high as 1. ‘

4. Experimental procedure

The most common methods used to measure damping are the free vibration decay method,
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_ preload of 45N the analytical and expenmental ﬁrst mode frequencres are s1gmﬁcantly dif-

ferent. At higher preloads the: results of frequency are in good agreement with the experi- -
mental results before any fallure is initiated. For the loss factors, however, the analytical

~ and experimental results are very close for the taped beams and differ consrderably for the

bare beams. The physrcal explanatlon is not clear at this moment. Fallure is believed to be
initiated at the point at which the loss factor shows an increase with i mcreasmg preload in -
the expenmental result. At high preloads the difference between finite element results and
experimentally measured ones is due to the problems bemg assocxated with measurement of
small leveIs of damping. ‘
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Fig.5 Variation of loss factor and frequency with preload (20% taped from the root). o
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