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Scaling of Low-Velocity Impact for
Symmetric Composite Laminates*

BHAVANI V. SANKAR

Department of Aerospace Engineering
Mechanics and Engineering Science

University of Florida
Gainesville, FL 32611

ABSTRACT: The equations governing the problem of low-velocity impact of a simply
supported rectangular midplane-symmetric laminated plate are nondimensionalized such
that the problem is defined in terms of five dimensionless parameters. A parametric study
using the Graeco-Latin Factorial Plan is performed. Semi-empirical formulas for maxi-
mum impact force, impact duration, and maximum back surface strains are obtained. It
is found that some of the simple impact models provide the bounds for the case of impact
on a finite extent plate. A one parameter model is derived for impacts of short duration.

KEY WORDS: scaling of impact, low-velocity impact, composite laminates, nondimen-
sional models.

1. INTRODUCTION

AST STUDIES, BOTH experimental and numerical, have shown that the re-sponse of composite laminates to low-velocity projectile impact can be pre-
dicted accurately up to the point of initiation of damage. Estimation of total
damage requires progressive damage models beyond the point of damage initia-
tion. While research is progressing in the areas of prediction of post-impact
strength as well as developing impact resistant materials, there is a need to

develop simple design procedures for engineers involved in designing composite
structures that are susceptible to foreign object impact damage. There are a
number of parameters in the impact problem that govern the response and
damage initiation. In order to understand the effect of each parameter, it will be
convenient to identify fewer nondimensional groups of variables, and study the
problem by varying the nondimensional parameters. Further, scaling of response
from laboratory coupons to prototype structures will also be possible, if non-
dimensional models are used.
The earliest nondimensional model for low-velocity impact response was pro-

posed by Zener [1] in 1941. Sun and Chattopadhyay [2] studied the effect of initial
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stresses on impact using dimensionless variables. References [3-8] are some
examples of recently proposed nondimensional models for the impact problem.
In what follows, a method for scaling of impact variables is suggested, so that the
impact equations can be expressed in terms of five nondimensional parameters.
Two of them describe the plate stiffness, two of them describe the impactor mass
and velocity, and the fifth parameter defines the interaction between the impactor
and the plate.
A new numerical algorithm is developed to solve the impact equations. A

parametric study is performed by choosing five values for each of the five non-
dimensional parameters. The Graeco-Latin Factorial Plan is used to obtain

empirical formulas for maximum impact force, impact duration and maximum
back surface strains. The formulas are compared with the simple spring-mass
model and also with the case of impact on an half-space. Following Zener [1] and
Olsson [7], a one parameter model is derived, which will be useful in the case of
impacts of very short duration typical of very small projectiles.

2. IMPACT EQUATIONS

We will consider the problem of central impact on a simply supported rectan-
gular symmetric laminated plate. The transverse deflection w at the center of the
plate is given by:

where mp is the mass and úJmn are the natural frequencies of the plate, t is the time
variable, and f(t) is the unknown impact force history. The equation of motion
of the impactor is:

where m is the impactor mass and x(t) is the impactor displacement. The interac-
tion between the plate and the impactor at the contact region is defined by the
elastostatic contact law given by:

where q, the indentation, is given by q = x - w. For a homogeneous
transversely isotropic plate, the exponent a in Equation (3) can be taken as 1.5
and the contact stiffness k can be approximated as:

where E. is the Young’s modulus of the plate in the thickness direction, and R is
the radius of curvature of the rigid impactor. For a general laminate the contact
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stiffness k and the exponent a have to be found from indentation tests [9] or
numerical simulation of indentation tests [10]. For a quasi-isotropic layup, e.g.,
[0, +45, -45,90]&dquo;S, a = 1.5 seems to be a reasonable approximation.
The natural frequencies úJmn of a simply supported rectangular plate depends

on the type of laminated plate theory used to describe the plate motion. If we
assume classical plate theory, then for a midplane-symmetric laminate:

where D,~ are the laminate flexural stiffness coefficients, Q is the mass density per
unit area of the plate, and a and b are the length and width of the rectangular lam-
inate. If the effects of shear deformation are included, then additional stiffness
terms, such as A44, A45 and A,,, will be introduced in Equation (5), which, in
turn, may increase the number of non-dimensional parameters needed to define
the impact problem. A numerical algorithm to solve Equations (1-3) can be
found in Reference [11].
One of the modes of impact damage is the back surface fiber splitting and fiber

breakage. The maximum back surface strain can be considered as a controlling
factor for predicting back surface damage. The shear strain at the center of the
plate is identically equal to zero due to symmetry. The normal strains Exx and Eyy
at the center of the plate on the back surface are:

The damage that occurs in the vicinity of the contact region, such as matrix
cracking, delamination initiation, are due to local stresses caused by indentation.
These stresses can be approximated by the corresponding values obtained from
a static contact analysis. The maximum contact pressure, which is at the center
of contact for small contact areas, can be considered as a measure of severity of
stresses due to static indentation. For transversely isotropic materials, the rela-
tion between the contact force f, and the contact radius c is:
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where k~ depends on k and R. The maximum contact pressure po at the center is
then given by:

We shall use the term impact parameters to describe the constants in the above
set of equations. The laminate parameters are: a, b, A, p, DB, D12, D22 and D66.
The parameters that describe the impactor are: m, vo (impact velocity) and R.
The contact stiffness k depends on both the impactor and the target material.
Thus, there are 12 impact parameters that describe the impact problem. We shall
use the term impact variables to describe the output quantities: f, t_,, (impact
duration), w, x, exx, E,,,,, Vr (rebound velocity). The purpose of an impact analysis
is to solve the above equations for a given set of impact parameters in order to
predict the maximum values of the impact variables. In the following section a
model is proposed to describe the impact problem in terms of five non-
dimensional parameters.

3. NON DIMENSIONAL EQUATIONS

The mass, length and time dimensions can be normalized with respect to plate
mass mp, plate length a, and the fundamental period of the laminate (1/W,~&dquo;)
respectively. Then Equations (1-3) can be written in terms of two nondimen-
sional plate parameters C and D, and three nondimensional impactor parameters
M, K, and V. The definition of the nondimensional parameters are:

The plate parameters C and D are a measure of the anisotropy in the flexural
behavior of the plate. For isotropic square plates C and D are equal to 2 and 1
respectively. The nondimensional impact variables are:

The expression for nondimensional frequencies take the form:

Equations (1-3) can be written as:
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with the initial condition X(0) = 0, and X(0) = V. In the nondimensional
model a dot over a variable denotes differentiation with respect to the nondimen-
sional time T.
The back surface strains are:

In order to solve Equations (13-15), and also to compute strains in Equations (16)
and (17), one can use the numerical algorithm given in Reference [11]. In the pres-
ent study a slightly modified procedure is used, and it is explained in the Appen-
dix.

4. SEMI-EMPIRICAL SOLUTION

Equations (13-15) are nonlinear integral equations in variables F, X and W.
Since a closed form solution is not possible, we seek a semi-empirical solution
that will be useful to designers, by conducting a systematic parametric study.
Equations (13-15) were numerically solved for various values of the nondimen-
sional parameters in a given range. Then, important impact variables such as the
maximum value of the impact force, impact duration, maximum strain etc., were
computed for each case. A curve fitting procedure was used to obtain a simplified
empirical relation between the impact parameters and the impact variables.

Standard regression analysis procedures will require a large number of test
cases to obtain a functional relationship between the impact variables and the
impact parameters. For example, if we decide to use five values for each parame-
ter, then 51 impact problems have to be solved to find the effect of each parameter
on the maximum impact force and other impact variables. In the present study
the Graeco-Latin Factorial Plan [12], which requires only 51 combination of the
parameters, is used to obtain semi-empirical formulas for the impact problem.
Traditionally factorial plans are used to curve-fit experimental data so that maxi-
mum information can be obtained from a minimum number of tests. Factorial

plans have also been used to study numerical simulations [13].
We assume that the maximum value of any impact variable, for example maxi-

mum impact force Fmax, can be expressed in the form:
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where Fo is a constant and 0, are semi-empirical functions to be determined from
the parametric study.
While selecting the values of C, D, M, V and K for the parametric study, care

has to be taken to ensure that the range of each parameter is small enough for
accurate curve fitting, but at the same time, the range should be useful in actual
design situations. The impact problem was divided into two broad categories: (i)
large mass (e.g., 1-10 kg) impacting at lower velocities (e.g., 1-3 m/s); (ii) small
mass (e.g., 0.01-0.1 kg) impacting at higher velocities (10-100 m/s). The former
can be considered to simulate impact damage due to dropped hand tools, whereas
the latter corresponds to small projectile impacts. Five values were selected for
each nondimensional impact parameter. They are shown in Table 1. The combi-
nation of parameters used in each of the 25 numerical test cases are shown in
Table 2 (Graeco-Latin Square). It may be noted that the range and the values of
parameters chosen in the present study are not unique, but they have been used
only for the purpose of demonstrating the usefulness of the present approach.
From the studies described above the following empirical formulas for FmaX,

Tmax~ Exx(max) were obtained for both large and small mass impact.

Large Mass Impact

Small Mass Impact

It may be noted from Equations (19-20) and (22-23) that parameters C and D
are not explicitly present in the expressions for F max and T~&dquo;aX. This is because of
the particular choice of dimensionless parameters used in the present study. It
should be mentioned here that the formulas given above are valid only in the par-
ticular range of impact parameters shown in Table 1.

5. COMPARISON WITH SIMPLE MODELS

One can have a better appreciation of the quasi-empirical formulas given in
Equations (19-24), if one considers some simple impact models. In the case of
large mass impact, the target plate can be approximated by a spring-mass model,
and the indentation stiffness can be assumed to be much higher than the plate
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Table 1. Range of nondimensional parameters used in parametric studies.

Table 2. Graeco-Latin Square.
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stiffness. In the nondimensional model, the plate stiffness and equivalent mass,
each will be equal to 0.25, so that the natural frequency of the spring-mass system
is equal to unity. The impactor mass is M, and the impact velocity is V. Imme-
diately after impact, the impactor and the plate mass attain a velocity of
MVl(M + 0.25) in order to conserve momentum. Assuming 4M > 1, the sim-
ple harmonic motion of the spring-mass system is described as:

where So = 1/(1 + 4M). The expressions for the maximum impact force

experienced by the impactor and the impact duration are:

The impact of a smaller mass can be approximated by the impact on a half-space.
The results for impact of a spherical mass on a half-space can be found in Refer-
ence [14]. The results expressed in nondimensional form are:

From these results it may be noted that the exponents of M, V and K in the semi-
empirical model (Equations 19-24) are somewhere in between those in Equa-
tions (26-29). That is to say, the simpler models are some kind of bounds for the
results of impact on a finite extent plate.

6. ONE PARAMETER NONDIMENSIONAL MODEL

The simplified model presented in this section is based on the approach first
proposed by Zener [11, and later modified for composite laminates by Olsson [ 7 ].
The starting point for this model is Equation (A3) in the Appendix. In a previous
work [15] the function H(T ) described by Equation (A4) was approximated by a
linear function of T, and a one parameter model was derived. Such an approx-
imation is found to be valid only for short impact durations (Tmax < 1). In the
present study, the function H(T) is approximated by a quadratic function as:

It should be noted that H(T)-unlike G(T) defined by (A2) in the Appendix-is
a rapidly converging series, and representation by a simple function as in Equa-
tion (30) is valid. The values of B and M* can be found by least square curve fit-
ting. The function H(T ) depends only on C and D. Hence for each pair of C and
D, one can find a corresponding pair of B and M*. Some examples are shown in
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Figure 1. Using the parabolic approximation for H, Equation (A3) can be written
as:

where B and M* are constants to be determined. In Zener’s approximation [1], the
displacement of the plate at the point of application of force was proportional to
the total impulse. This is represented by the first term on the right hand side of
Equation (31). While considering impacts on finite extent plates, an apparent
mass effect slows down the plate, and that is the physical meaning of the second
term on the right hand side of Equation (31). Differentiating Equation (31) twice
with respect to T, we obtain:

Following [1], Equations (14) and (32) can be reduced to a single equation as
given below:

Figure 1. Comparison of exact and parabolic approximation of function H(T ).
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Figure 2. Solution of the one-parameter nonlinear differential equation.

where the equivalent mass Me is given by

The difference between the one parameter models derived in References [1,7,15]
and the present model is that the second order effects due to the plate mass are
included using the term M*. As seen from Equation (34) the effect of M* is to
increase the effective mass Me. The initial conditions for the nonlinear differential

Equation (33) are: Q = 0, and dQldT = 0, at T = 0. The impact force F can
be expressed in terms of Q using the contact law F = KQI 1. Then Equation (33)
transforms into a nonlinear ordinary differential equation with a single parameter
A that replaces all the five nondimensional parameters as shown below:

where 2 = Q17-V, r = TlT, A = BM.IT, and T = (Me/KVO 5)° 4. Equation
(35) can be solved numerically for various values of A as shown in Reference [1].
From the maximum value of S, Qmax and hence Fmax can then be calculated. The
solutions of Equation (35), i.e., ~ versus r, for various values of A are shown
in Figure 2.
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7. CONCLUDING REMARKS

A method for nondimensionalizing the impact equations is suggested in this
paper. The particular method chosen in this study enables defining the impact
problem in terms of five dimensionless parameters. The empirical formulas for
maximum impact force and impact duration show that the simple spring-mass
model and the half-space impact provide bounds for the actual force and impact
duration. The nondimensional model can be used to estimate the impact response
quickly during preliminary design of composite structures. In deriving the
empirical formulas, the nondimensional parameters C and D are chosen such that
the results are applicable to a wide variety of composite plates. Since the time
dimension is normalized with respect to the fundamental period, problems
involving large impact durations (as in the case of very flexible targets) can be
solved in relatively smaller number of nondimensional time steps. If the impact
duration is small, then the function H, which is the plate response to a unit step
force, can be approximated by a simple quadratic polynomial, and the whole
impact problem can be cast into a one parameter nonlinear differential equation.
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APPENDIX

In this section a numerical algorithm for solving Equations (13-15) is
described. Although the method is developed for the system of nondimensional
equations, they are equally applicable to Equations (1-3) also. Equation (13) can
be written as:

where the function G is given as:

The function G(T) represented by a double series in Equation (A2) is condition-
ally convergent, and hence cannot be represented as a simple function of T.
Hence, we will rewrite (Al) as:

 at UNIV OF FLORIDA Smathers Libraries on May 26, 2009 http://jrp.sagepub.comDownloaded from 

http://jrp.sagepub.com


307

where

From (A3) it is obvious that H(7) is the center deflection W(7) due to a unit step
force. Integrating (A3) by parts and noting F(0) = 0,

Let us assume that the variation of F(1) during a small finite time interval AT is
linear so that F, the time derivative of F, is a constant during the interval, i.e.,

From (A5) and (A6) we obtain:

where the function Sl is defined as:

In order to understand the significance of S, consider the plate response due to
a unit slant-step function R(T) defined as:

Substituting R(T) for F(T) in (A5), we obtain the response as:

By setting j = 1 in (A8), we obtain:
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Comparison of (A10) and (All) shows that (1/OT)Sl(i - 1) is equal to the
deflection at T = iATdue to a unit slant-step function R(T). This physical mean-
ing of the function Sl will be useful in computing S~, when numerical methods,
such as finite elements, are used to model the impacted structure.
The impactor displacement X(T) can be derived as:

where the function S2 is defined as:

In the numerical procedure we will satisfy the contact relation (15) exactly at the
end of each time step. Thus for the ith time step:

Equation (A14) is a nonlinear algebraic equation in A, and can be solved using a
simple iterative scheme [11].
The above described numerical scheme is actually a modification as well as a

more formal representation of the algorithm described in Reference [11]. It may
be noted that the Function S, in the present study plays the role of S-function in
Reference [11]. Further, Sl depends only on the two nondimensional parameters
C and D, and hence describe the plate response characteristics completely. They
can be used with various combinations of M, V and K, which describe the im-
pactor characteristics. Once the force history is determined in terms of A,’s, it can
be substituted in Equations (16) and (17) to obtain the strain histories.
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