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A Plate Finite Element for
Modeling Delaminations

B. V. SANKAR AND V. S. RAO
Department of Aerospace Engineering,
Mechanics and Engineering Science
University of Florida
Gainesville, FL 32611

ABSTRACT: Laminate constitutive relations are derived for a composite plate, the
midplane of which is offset from the reference x-y plane. The equations are similar to the
conventional laminates except that the definition of the [4], [B], and [D] matrices are dif-
ferent. This offsetting procedure is convenient for finite element modeling of delamina-
tions. Starting with the three-dimensional J-integral, an expression for strain energy
release rate for delaminations is derived. Unlike the crack closure method, the G can be
derived with one single computation; further, the distribution of G along the delamination
front can also be obtained. The method is illustrated for an anisotropic DCB specimen.

INTRODUCTION

ITH THE INCREASING use of laminated composites in a variety of struc-

tures, there is a need for efficient analytical/numerical methods for the pur-
pose of analysis and design. Composite structures may delaminate during pro-
cessing or service. Although nondestructive inspection techniques are available
to locate delamination damage, they are expensive and cannot be frequently used.
Hence, the designer has to allow for some delaminations in designing a compos-
ite structure. Then it is necessary to have analysis tools that can be used to study
the effects of delaminations on the performance of the structure.

The effects of delaminations are: (a) reduction in static load carrying capacity
of the structure; (b) an additional mode of instability is introduced, for the sub-
laminates may buckle at a reduced magnitude of inplane loads; (c) delaminations
may become unstable under dynamic loads, such as impact, and lead to cata-
strophic failure; (d) the natural frequencies of vibration and mode shapes may be
altered; and (e) structural damping may increase due to the friction between
delamination surfaces. The strain energy release rate (G) is a convenient parame-
ter to predict the onset of delamination propagation. In analyzing delaminations
under static loads, G has to be evaluated along the delamination front. The
delamination will propagate at sites where G is greater than a critical value G, for
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the particular material and layup. A similar fracture mechanics approach can be
used to study dynamic delamination propagation and post-buckling of delami-
nated plates. The objective of our research is to develop a shear deformable, lam-
inated plate finite element with nodes offset to either surface of the plate, and to
demonstrate its efficient use in analyzing all of the above problems. However, the
present article will be concerned with the development of the plate element, its
efficiency and accuracy compared to other formulations, and its usefulness in
computing the strain energy release rate along the delamination front.

Our research group has developed a beam finite element with offset nodes for
analyzing static analysis of delaminated beams (Sankar, 1991), hygro-thermal and
free edge stress analysis (Sankar and Pinheiro, 1990), dynamic delamination
propagation due to impact loading (Sankar, Hu and Sun, 1989; Hu, 1990; Sankar
and Hu, 1991), and damping due to constrained viscoelastic layers (Sun, Sankar
and Rao, 1990; Rao, Sankar and Sun, 1990). Buckling of delaminated plates has
been studied by Shivakumar and Whitcomb (1985), and post-buckling of ellip-
tical delaminations was studied by Whitcomb and Shivakumar (1990) and
Flanagan (1987). Grady and Sun (1986) performed impact tests on delaminated
beams to study crack propagation under dynamic loading. Crews, Shivakumar
and Raju (1989) performed a three-dimensional analysis of DCB specimens to
find the effects of anticlastic curvature on G distribution.

In the following sections, we describe the derivation of a laminated plate finite
element with offset nodes, and its application in computing the strain energy
release rate along the delamination front. An expression for strain energy release
rate along the delamination front for plate-like structures is derived from the
three-dimensional J-integral. Numerical examples are given for the case of a
double cantilever beam specimen.

FINITE ELEMENT FORMULATION

A plate finite element model is developed for the analysis of delaminations in
laminated composite plates. The relations between the force and moment resul-
tants, and the strains and curvatures, are derived for a reference plane located at
arbitrary distance z, from the midplane of the laminate. With such a formulation,
it is possible to easily derive the element matrices for nodes located at a non-zero
distance away from the midplane. Another feature of the element is that the cou-
pling between bending, stretching and twisting is completely accounted for. The
derivation is based on the Reissner-Mindlin theory, which accommodates trans-
verse shear strains and requires C° continuity only. Most current plate elements
are derived based on this theory since a variety of interpolatory schemes can be
used, and the problems associated with the classical theory are avoided. The
assumed displacement field is

u(x,y,2) = uofx,y) + z6:(x,y)
v(x,y,2) = volx,y) + z0,(x,y) ey
wix,y,z) = w(x,y)
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where
u = displacement in the positive x direction
v = displacement in the positive y direction
w = displacement in the positive z direction
0,,0, = rotations
Uo,vo = displacements in the plane of definition of the nodes

The stress-strain relation for each ply with respect to the laminate axes is

o [01 [0) H )
u Lo @alles @
[Q] and [Q;] are the transformed ply stiffnesses, and o, and o5 stand for inplane ’

stress and transverse shear stresses, respectively. The strain-displacement rela-
tions are

€ Uo x -
€, Vo,y 62”‘,
€y] = f{Uoy + vo.| + 210,, + 6:, 3)
€xz Wo,. + 01 0
€y Wo_y + 02 0

By using the above stress-strain and strain displacements, the strain energy per
unit area of the laminate is calculated as

U = 5 EYISIE] @

N —

where the vector {F} is
{E} = [uo,xVo.y(uo,y + vo)(Wo. + 01)(Wo,y + 02)91,x02,y(01,y + 02,x)]T (5)

and, the matrix [S] is

(41 18] [0] ;
[S1 =B} [D] [0] ©)
[0y [0 [G] -

The submatrices [4], [B], [D] and [G] are defined below.

2+h12
A4y = .‘ [Qldz Lj =123 M

20—h/2
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ot+h/2
B; = s AQ1dz ij =123 (8)
20— h2
To+h/2
Dij = S ZZ[Q]dZ i’j = 1’2’3 (9)
20— h/2
Zo+h/2
G, = S [Os)dz i,j=12 (10)
20— h/2

2o is the distance of the midplane of the laminate from the x-y reference plane,
and h is the thickness of the laminate.

By using this formulation, the stiffness matrix of the isoparametric, variable-
eight-node, laminated plate element with node-offset capability is calculated. The
calculations follow standard finite element discretization procedure. When thin
plates are modeled using this element, shear locking problems, which are in-
herently present in such formulations, can cause the solution to be very stiff.
Reduced integration of the overall energy is often used to avoid this problem, but
this inexact evaluation of the stiffness matrix may introduce spurious modes
which can corrupt the solution.

AN EXPRESSION FOR STRAIN ENERGY RELEASE RATE

We assume that there is a single dominant delamination in the plate. Further,
we assume that the delamination will continue to grow in the same plane, and the
possibility of matrix cracking and delamination initiation in adjacent interfaces is
not considered. The entire laminate is divided into two sublaminates, one on
either side of the plane of delamination. The two sublaminates are modeled by
offset node finite elements such that in the uncracked portion of the plate, they
share common nodes. In the delaminated portion, the sublaminates may be con-
nected by gap elements to monitor contact between crack surfaces.

Consider a plane normal to the delamination front and perpendicular to the
plate (Figure 1). Let us denote the plane as the 1-3 plane. Let the 1-axis be nor-
mal to the delamination front. The 2-axis is on the plane of delamination and is
tangential to the delamination front at the point where G has to be found. Con-
sider a zero-area path I" on the 1-3 plane surrounding the crack tip. The strain
energy release rate G can be derived as (Shih, Moran and Nakamura, 1988)

G = J = S [W(Slj - U,‘jui,[]njdr (11)
r

where W is the strain energy density, n; are the direction cosines of the normal
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Figure 1. Zero-area path for the J-integral.

to I', ¢ and u are the stress and displacement components, 6 is the Kronecker
delta, and sum over repeated indices is assumed.

Consider the above integral for the path I', in the bottom sublaminate (Figure
1). For this path, n, = — 1, and n, = n, = 0. Hence, the integral in Equation
(11) becomes

GM =JWm = g (-W + Uilui,l)dF (12)
r,

The strain energy density for an elastic solid can be written as
Ol (13)
Then
Oult;y = 2W — ¥ (14)
where ¥ has the units of W and is given by
¥ = altis + 05l s ' (15)

Substituting from Equations (14) and (15) into Equation (12), the J-integral for
path I"; becomes

JW =ygm — d)(l) (16)

where U" is the strain energy per unit are of the sublaminate 1, and ¢**’ is also
an energy quantity per unit area given by
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o = j ¥ (gT (17)
r,

Similarly, the integral for other parts of the path I"' can be derived as

J(Z) — _U(Z) + ¢(2) (18)
J(3) = __.U(3) + ¢(3) (19)
J(4) — U(4) . ¢(4) : (20)

Thus, the strain energy release rate G is simply the sum of the integrals for the

four sublaminates:

G = J = (U(l) + U(4) - U — U(3)) + (_d)(l) + ¢(Z) + ¢(3) — ¢(4))
@D

The stress components o, and o.; and the displacement gradients u, , and u, ;
are continuous between sublaminates 1 and 2, and hence, ¢ is continuous across
the zero-area path we have chosen for the evaluation of the J-integral, i.e.,
o = ¢, Similarly, ¢® = ¢®. Hence, the expression for G in Equation
(21) becomes

G=J=UY +U® - U@ - U@ @2)

A physical interpretation of the results in Equation (22) is as follows. Let the
delamination extend by a small amount A(s), where s is the curvilinear coordinate
along the delamination front. Along a small length ds, the area of the new crack
surface, dA, created is equal to A\(s)ds. Now the plate gains dA4 of sublaminates
1 and 4, and loses equal area of sublaminates 2 and 3. Thus, the change in the
strain energy of the plate is

AU = §U™M + U — U — UOA(s)ds (23)

On the other hand, for constant loading of the plate, AU should also be equal to
AU = §G(s)Ns)ds 24)

where G(s) is the strain energy release rate. Thus, from Equations (23) and (24)
UMD + U — UD — UO)N(s)ds = $G(s)N(s)ds (25)

If Equation (25) should be true for any arbitrary A(s), then G(s) should be identi-
cally equal to (U") + U™ — U — U™),
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This method is valid as long as the delamination is big enough to treat the sub-
laminates as plates. Unlike the crack closure method, the present method can
compute G(s) from a single finite element run of the problem. The force and mo-
ment resultants are computed from the finite element results and the strain energy
density at the nodes along the delamination front can be computed using Equa-
tion (4).

NUMERICAL EXAMPLES

Double cantilever beams made up of aluminum, O and 90 unidirectional
graphite/epoxy composites are considered. The beam was modeled by using
eight-node isoparametric elements. The dimensions of the beam and load applied
are shown in Figure 2. The material properties for aluminum are £ = 71 GPa
and »,, = 0.3. The material properties for graphite epoxy are E, = 134 GPa,
E, = 13 GPa, G,, = 68 GPa, v,, = 0.35 and v,; = 0.34. The results for G
along the delaminaion front, and the w-displacement of nodes at a distance of
0.78125 mm from the delamination front, are shown in Figures 3-5. The G varia-
tion is more or less uniform, except at the ends. A similar trend was observed by
Crews, Shivakumar and Raju (1989) using three-dimensional FE analysis. It
should be noted that gap elements were not used in the present study, and hence
there is interpenetration of nodes near the free edges in some cases. Hence, the
G values in the vicinity of the free edges cannot be considered as realistic. Finer
discretization near the free edges and use of gap elements to monitor crack clo-
sure are being implemented to obtain more exact estimates of G(s). The present
method can be applied to a variety of delamination problems, e.g., elliptical
delaminations under compressive loads.

Load = 4080 Nm
tength = 0 1 m
Crack tength = 0.05 m

width = 0.025 m

Sublaminate Thickness = 0 00165 m

Figure 2. Double cantilever beam specimen.

Downloaded from http://jrp.sagepub.com at UNIV OF FLORIDA Smathers Libraries on May 26, 2009


http://jrp.sagepub.com

Stratn EnerQy Rolsece Fate (v m)
CThousandas)

1.3

-1

1.3

Norreli1zea viath Cy/p)

1

-

Oimpincerent (wew"8)

Figure 3. Variation of strain energy release rate and displacement at the crack tip (alumi-
num).
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Figure 5. Variation of strain energy release rate and displacement at the crack tip (90°
graphite/epoxy).

SUMMARY

A shear deformable, laminated plate element with nodes offset to either one of
the plate surfaces has been developed. This element is convenient in modeling
delaminations. A simple expression for strain energy release rate has been
derived starting from the three-dimensional J-integral. The expression has the
advantage of computing the strain energy release rate distribution along the
delamination front in one single computation.
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