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Abstract

Flexural stiffness properties of a textile composite beam
are obtained from a finite-elernent model of the unit
cell. Three linearly independent deformations, namely,
pure extension, pure bending and pure shear, are
applied to the unit cell. The top and bottom surfaces of
the beam are assumed to be traction free. Periodic
boundary conditions on the lateral boundaries of the
unit cell are enforced by multi-point constraint ele-
ments. From the forces acting on the unit cell, the
flexural stiffness coefficients of the composite beam are
obtained. The difficulties in determining the transverse
shear stiffness are discussed, and a modified approach
is presented. The methods are first verified by applying
them to isotropic and bimaterial beams for which the
results are known, and then illustrated for a simple
plain-weave textile composite.

Keywords: textile composites, woven composites,
micromechanics, unit cell analysis, homogenization,
finite elements

1 INTRODUCTION

Recent advances in textile manufacturing processes
and resin transfer molding techniques have led to the
development of what are known as textile structural
composites. Advanced fibers such as graphite and
glass can be woven or braided into structural
- preforms. The dry preforms can then be impregnated
with appropriate matrix materials, e.g. thermosetting
and thermoplastic resins, to fabricate composite
structures. Significant progress has been made in the
manufacturing processes of these novel materials.
There is great potential for the extension of this
technology to metal- and ceramic-matrix composites.
With the development of textile structural composites
there is a need for analytical/numerical models for
predicting the mechanical behavior of these materials
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from the fiber, matrix and fiber/matrix interface
properties, and the fiber architecture. Ishikawa and
Chou," Yang and Chou,® and Ma er al.,” have
proposed several models for estimating the thermo-
elastic and mechanical properties of woven and
braided composites. In Refs 1-5, the unit cell of the
woven composite was modeled by using classical
lamination theories to predict the stiffness coefficients
([A], [B], [D]) of the textile composite. References 6
and 7 are concerned with elastic constants such as E.,
E,, etc. of the textile composite. Foye,® Whitcomb,’
Yoshino and Ohtsuka,’’ and Dasgupta er al™
analyzed the unit cell of textile composites by using
three-dimensional finite elements to predict the
overall macroscopic behavior of the composites. Their
models can be used to predict both stiffness and
strength properties.

Numerical modeling of the unit cell seems to be
popular because of its ability to capture the effects of
complicated fiber architectures. These models are
based on the assumption that a composite structural
element can be formed by assembling the unit cells in
all three dimensions. Such an assumption is true in the
case of thick composites, but in many applications one
or two layers of fabric are used, e.g. skin of a
semi-monocoque structure, frames, ribs, stiffeners,
etc. In that case there will be one or two unit cells in
the thickness direction, and hence the free surface
effects will be significant. Furthermore, the in-plane
stresses and displacements will vary through the
thickness, violating the assumption of homogeneous
deformation in all the unit cells. The elastic constants
estimated using the three-dimensional analysis of the
unit cell may not be applicable to thin composites.
This can be illustrated by a simple example as follows.
Consider a composite medium consisting of alternat-
ing layers of two isotropic materials with Young’s
moduli E; and E,, and thickness A; and h,. Any
available homogenization scheme will predict that this
material can be represented as an orthotropic material
with an equivalent in-plane Young’s modulus
E.q=(E h; + E;h,)/(hy + h,), which is same as the
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simple rule of mixtures. Now, consider a bimaterial
beam consisting of the same two layers. The flexural
modulus D, of the beam, in general, is not equal to
E. (hi+ hy)’/12. Further the bimaterial beam will
exhibit extension/bending coupling, which cannot be
predicted if the beam were considered orthotropic.
This illustrates the difference between a structure
having a large number of unit cells and that with fewer
unit cells in the thickness direction. Then it will be
useful to predict the in-plane and flexural properties
of the composite directly, instead of the three-
dimensional elastic constants. The present paper
demonstrates such an idea for a woven fabric
composite.

2 UNIT-CELL ANALYSIS FOR THREE-
DIMEMNSIONAL ELASTIC CONSTANTS

In this section a procedure for determining the
three-dimensional eclastic constants from the unit cell
analysis is described. Later, this method is used to
determine the shear modulus G.,, and the results
compared with the transverse shear stiffness of a thin
textile beam. The unit-cell analysis assumes that the
material is subjected to a uniform state of strain in a
macroscopic sense. The average stresses required to
create such a state of strain is computed from the
finite element model of the unit cell. In the microscale
all unit cells have identical displacement, strain and
stress fields. Continuity of stresses across a unit cell
then requires that tractions be equal and opposite at
corresponding points on opposite faces of the unit cell
(periodic boundary conditions). Since the displace-
ment gradients are constant for a homogeneous
deformation, the displacements at corresponding
points on opposite faces of the unit cell differ only by
a constant.

Consider a rectangular parallelpiped with sides
parallel to the coordinate axes x;, x, and x5 as the unit
cell. Let the length of the unit cell in the x; direction
be L;. A macroscopically homogeneous deformation
can be represented as

u; =f[,,x,, i, j = 1, 2, 3 (1)

where Hj; are the displacement gradients. Then the
periodic displacement boundary conditions to be
imposed on the faces x; =0 and x; = L, are

ui(Lb X2, xs) - ui((): X2, xa) =HyL, )
ui(xl: L,, xs) - ui(x1: 0, x3) =H,L, (3)
u;(x1, X2, L3) — t;(x1, x5, 0) = Hi3L, (4)

The traction boundary conditions on the faces x; =0
and x; = L; are

T(Ly, X2, x3) = —T(0, x3, x3) 6))
]:'(xly Lz: JC3) = *E(xla O: x3) (6)

E(xl! X2, L'&) = —ﬂ(xl: xz_: O) (7)

The above boundary conditions can be imposed by
using multi-point constraint elements in the finite-
element model. The average macroscopic stresses
corresponding to the homogeneous deformations are
obtained by averaging the tractions on each face of
the unit cell. For example,

1
= ()
01! <L2L3> z F/ (8)

n

where F{™ is the nodal force in the j direction at the
nth node, and ), denotes summation over all nodes
on the face x; = L,. The other stress components can
be computed in a similar fashion. The macroscopic
tensorial strains are given as €; = (3)(H; + H;).

In implementing this procedure Hj is chosen such
that only one component of strain is non-zero, and the
corresponding stresses are computed by the method
described above. Substituting the values of the strain
and the stresses in the stress/strain relationships, the
stiffness coefficients in a column corresponding to the
non-zero strain can be evaluated. This procedure is
repeated for other strain components to obtain all the
stiffness coefficients, from which the elastic constants
of the homogeneous material can be determined. In
applying this method care should be taken in
discretizing the unit cell such that opposite faces of the
unit cell have identical nodes.

As mentioned earlier this approach assumes that
the unit cells repeat themselves in all three directions.
This may not be true in the case of thin textile
structural composites where there may be a finite
number of unit cells in the thickness direction, and
free surface effects will then be predominant. The
displacement gradients through the thickness may be
significant and hence the assumption of homogeneous
deformation will be violated. Then the homogeneous
elastic constants will not be useful in predicting the
beam/plate behavior. In such a case the composite
can be idealized as a homogeneous beam/plate, and
the beam/plate stiffness coefficients can be directly
computed using a similar method. The extension of
the unit cell approach to compute stiffness properties
of a textile composite beam is explained in the next
section.

3 FLEXURAL STIFFNESS COEFFICIENTS

In this section a procedure for finding the equivalent
flexural stiffness properties of a textile structural
composite beam is described.” The textile composite
beam is assumed to be in the xz plane with unit cells
repeating in the x direction. A state of plane strain
parallel to the xz plane is assumed. The idea behind
using a beam model to illustrate the proposed method
and its scope are similar to the one-dimensional fabric
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strip models presented by Ishikawa and Chou’ and
Yoshino and Ohtsuka.’” On the macroscale it is
assumed that the beam is homogeneous and its
behavior can be characterized by the following beam
constitutive relations:

Ky Ky Kis €9 P
K Ky Ky Kpr=94M )
K3 Ky Kis Yo 14

where [K] is the symmetric matrix of beam stiffness
coefficients; €, k and y, are the mid-plane axial
strain, curvature and shear strain, respectively; P, M
and V are the axial force, bending moment and shear
force resultants respectively in the homogeneous
beam. The mid-plane deformations are related to the
mid-plane axial displacement u,, transverse displace-
ment w, and rotation ¥ as
dug 3y ow

T KT Y0 l'[}_I_c?x (10)
Actually Ky, Kz, Ky and Ki; are similar to the
laminate stiffness coefficients A1, By;, Di; and k3Ass
respectively. There is no equivalence for K3 and K,
in the laminate theory, because the layers are assumed
be orthotropic (or transversely isotropic), and they are
rotated about the z axis omnly. However, such a
coupling between in-plane deformations and trans-
verse shear deformation may exist in textile
composites as the fibers are inclined to the xy plane
unlike in the laminates. Further the present approach
cannot be used to predict stiffness properties involving
the y direction, such as A;,, Ay, Dy, Dy etc.
However, their effects are not being neglected
because a state of plane strain parallel to the xz plane
has been assumed, and hence ¢,,, 7., etc. are all
taken as equal to zero. The beam constitutive
relationships in eqn (9) can also be expressed in terms
of compliance coefficients:

S Sz Si3 P €
Sz Sn S Me=4 K (11)
Sz S Ss Vv Yo

3.1 Steady-state loading conditions

As discussed earlier the unit-cell analysis assumes that
all the wunit cells are subjected to identical
displacement, stress and strain fields. This is true only
for the cases of constant axial force and constant
bending moment in the beam (Figs 1(a) and 1(b)). A
constant shear force state cannot be created because
the shear force will always give rise to building up of
bending moment as V = —~(dM/dx). A state where
the unit cells are subjected to identical deformation
under a shear force can be created by adding a couple
periodically (Fig. 1(c)) or by having shear tractions on
the top and bottom surfaces to cancel the bending

r
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Fig. 1. Steady-state loading of a beam.

moment continuously (Fig. 1(d)). In both -cases
traction-free conditions are violated on the top and
bottom surfaces of the beam. As will be seen later,
this situation creates difficulties in estimating the shear
stiffness of the beam accurately. '

3.2 Unit-cell boundary conditions

The equivalent properties are obtained by modeling
the unit cell with two-dimensional plane strain finite
elements in the xz plane, and applying three linearly
independent deformations to the unit cell separately.
It means that the differences in displacements between
corresponding points on the left and right faces of the
unit cell will be equal to that in a homogeneous beam
subjected to the same type of deformation. The three
macroscopic deformations applied to the unit cell are
(i) a unit axial strain: (i) a wunit curvature
accompanied by a transverse deflection such that the
shear strain y,, vanishes; and (iii) a unit transverse
shear strain. The left end, x =0, of the unit cell is
subjected to minimum support constraints to prevent
rigid body translation and rotation. The top and
bottom surfaces of the beam are considered as free

z
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Type of deformation | u(L,z)-u(0.z) | w(L,z)-w(0,z)

unit axial strain L 0
unit curvature Lz -L2/2
unit shear strain 0 L

Fig. 2. Definition of unit deformations applied to the unit
cell.
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surfaces. The edges x =0 and x =L have identical
nodes in the finite-element model and the displace-
ments along these edges are constrained by using
special constraint elements. The constraints applied
for each case of deformation are presented in the
table in Fig. 2. As an illustration consider the case of
unit curvature. If a homogeneous beam is subjected to
pure bending with a curvature equal to unity, then the
difference in u-displacements between two points
separated by the unit cell distance (L) will be equal to
Lz, and the difference in w-displacements between
those points will be equal to —L?*/2. This can be
verified from the elementary beam formulas.

3.3 Forces on the unit cell

In this section various relationships between the nodal
forces that will result from the unit-cell analysis are
discussed. Referring to Fig. 2, the corner nodes have
numbers 1 to 4. Node i is a typical node on side 1-4
and node j is the corresponding node on side 2-3.
Since tractions on the opposite faces of the unit cell
are equal and opposite, the following relationships
between the nodal forces are obtained:

E;= —Ecj (12)
E;= _sz (13)
Ei=-F, (14)

Now the equilibrium in z direction requires that
Es=— z4 (15 )

From the condition for equilibrium in the x direction
the following is obtained:

Eqg+FEa+Es+FE,.=0 (16)

Taking moments of all forces acting on the unit cell
about node 1, gives

(B + Fy)h=VL (17)

where V is the shear force acting on the unit cell. The
bending moment at x = 0 is given by

h h
MO =(3)Fa=(5)Fu-S ek (8
the bending moment at x = L is given by
h h
ML) = (3)Fo (3)Fat D8, (19)
j

Since the bending moment has a linear variation along
x, the bending moment at the center of the unit cell,
M,, is the average of M(0) and M(L). Using eqns (18)
and (19) an expression for M, can be obtained as

M, = (g) (Fa+Es)+3 55, (20)

It may be noted that M(0) and M(L) are in general

not equal, thus violating the applicability of unit-cell
approach. From eqns (17)—(19) the jump in bending
moment M—difference between M (L) and M(0)—can
be computed as

M=VL (1)

Now it is clear that the jump is caused only by the
presence of the shear force V, and is indicative of the
fact that the steady-state loading condition is not
satisfied. In fact this is the magnitude of the periodic
couple shown in Fig. 1(c). The couple manifests itself
as a pair of equal and opposite forces at the corner
nodes 2 and 3, and also 1 and 4. As will be seen later,
when V #0, these four concentrated forces causes
severe distortion at the corners of the unit cell. If
V=0, then M(0)=M(L), and since the bending
moment variation is linear, M will be constant along
the unit cell.

3.4 Determination of stiffness coefficients

As described above the three linearly independent
deformations are applied to the unit cell. For each
case, the axial force P, the bending moment at the
center of the unit cell M, and the shear force V are
computed from the nodal forces at the ends of the unit
cell. Note that M, can be computed from eqn (20).
From the results a pseudo-stiffness matrix [k] can be
computed that relates the deformations and the forces
as

kv ki ki €o P

kai ky Koz K = M, (22)
ks ks ki Yo Vv

For example, k;,, k,; and ks; will correspond to the
values of P, M, and V obtained for the case of unit
axial extension of the unit cell (Case I). The stiffness
matrix [k] will not be symmetric because it does not
relate corresponding forces and deformations (con-
jugate quantities, product of which yields an energy
term), rather it can be considered as a matrix of
influence coefficients. The inverse of [k], denoted by
[s], has some significance. The [s] is defined as

S11 S12 Si3 P €o
S21 S22 So3 M, =4k (23)
S31 S32 S33 |4 Yo

If V =0, a steady-state loading condition is obtained,
and then M, = M. Noting that only the last column of
[s] multiplies with V, and comparing eqns (11) and
(23) one can conclude that the first two columns of [S]
and [s] should be identical to each other. Since [S] is
symmetric (S, =S,; and S;3=S3), all but S;; are
determined from [s]. Estimation of shear compliance
S35 poses some difficulties. However, a procedure is
suggested in the next section.
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3.5 Estimation of shear stiffness K3

The difficulty in estimating S;3 (or Ks3) is associated
with the inability to create a state of deformation such
that only V is present. The shear modulus G,, of the
material can be computed easily by using the
procedure explained in section 2. But it will be based
on the assumption that the unit cells span the material
in the z direction also. There will be tractions present
on the top and bottom surfaces of the beam, and in
fact this situation corresponds to Fig. 1(d). One may
surmise that a shear correction factor k* could be
found such that K33 = xk*G,,h. But a simple bimaterial
beam example will show that the shear stiffness Ka;
can be grossly underestimated.

Consider a bimaterial beam with layers of equal
thickness (k/2). From the unit-cell analysis explained
in section 2 the shear modulus G,, is found to be equal
to 2G,G,/(G,+ Gy). Assuming G,/G,=10, G, =
0-182G,;. Whereas the actual shear stiffness Ksz; =
x*(G; + G)h/2, which means that the apparent shear
modulus G, = (G, + G,)/2=0-55G;. This is about
three times the previous estimate. Actually this
discrepancy is due to differing assumptions regarding
the constancy of shear stress or shear strain. The
unit-cell analysis of section 2 imposes constant shear
stresses in the two materials, and hence the
compliance of the composite is the average of
compliances of the constituents. This is true when
there are large number of unit cells in the z direction.
In reality, in a bimaterial beam the shear strain is
almost constant in the two layers, and the shear
stiffness is the average of the shear stiffness of the
individual layers, which is consistent with the method
of computing Ass in the lamination theory. This
illustrates the need for special procedures for
computing the shear stiffness of thin textile composite
beams.

In what follows a method is proposed for estimating
the shear stiffness Ks; (or the shear compliance S3;) of
thin textile composites. Consider a beam of length 2L,
consisting of two unit cells, modeled by plane finite
elements. The beam is subjected to boundary
conditions corresponding to pure shear strain (third
boundary condition in the table in Fig. 2). The top
and bottom surfaces of the beam are free of tractions.
The shear strain energy over a length L in the middle
of the beam, U, is computed from the finite element
results as ’

U, = 1)ty 9A, (24)

where ¢ and y{) are the shear stress and shear strain
at the center of the ith element and A; is the area of
the ith element. The summation is performed over
elements located in a length L in the middle of the
beam.

Next, the shear strain energy over the same length

L is computed by using the beam formula:

Uy = (?J:)VYOL = (%)V(SI:;P + Sz3Mc + S33 V)L
(25)

In the above equation P, M, and V can be obtained
from the finite element results. The coefficients Si5
and S5 have already been estimated. The shear
compliance Ss;; is the only unknown, which can be
solved by equating the shear strain energy quantities
in eqns (24) and (25).

The choice of two unit cells to perform the above
analysis deserves an explanation. When this was tried
with one unit cell for the cases of isotropic beam and
bimaterial beam, the results were not good. The
reason was the presence of concentrated forces at the
four corners of the unit cell as explained in section
3.3. When two unit cells are used in the model, still
the stress concentrations remain at the corners of the
beam, however their effects diminish in the middle
portion of the beam. As will be seen in the next
section, the two unit cell method gave very good Kz
for both isotropic and bimaterial beams.

4 RESULTS AND DISCUSSION

The procedures described above were demonstrated
using (a) an isotropic beam; (b) a bimaterial beam;
and (c) a textile composite beam. The dimensions of
the unit cell and the yarn architecture were taken
from Yoshino and Ohtsuka.’’ The same unit cell
dimensions were used for the isotropic and bimaterial
cases. The finite-element model of the unit cells and
their deformed shape under various independent
loading conditions are shown in Figs 3—5. The length
and height of the unit cell in all cases were equal to
3-6 and 1-8mm, respectively. Eight-node isopara-
metric plane strain elements were used to model the
unit cell. The finite element mesh for the isotropic
beam and the textile beam were identical to each
other.

The properties of the isotropic beam were as
follows: Young’s modulus = 10 GPa, Poisson’s ratio =
0-3, thickness=1-8mm. The properties of the
bimaterial beam were as follows: Young’s moduli = 10
and 100 GPa, Poisson’s ratios = 0-3, thickness of each
layer = 0-9 mm.

In the case of the textile composite the matrix
material was modeled as an isotropic material with
Young’s modulus =3-5 GPa and Poisson’s ratio =
0-35. The yarn was modeled as a transversely isotropic
material, with 23 plane as the plane of isotropy. The
yarn direction is assumed to be parallel to the 1 axis.
Note that 2 axis and y axis are parallel to each other.
The elastic constants of the yarn were as follows:
E, =159 GPa, E,=E;=10-9GPa, vi;=1vy;53=0-38,
Vo3 =0-38, G, =6-4 GPa.



66 B. V. Sankar, R.

() \

()
©

~

AL

@ ’!ﬁlll‘i“'

“‘::\
— ]

N

/|

e
L
I\

Fig. 3. Deformed unit cell of the isotropic beam subjected

to (a) unit extensional strain; (b) unit curvature; (c) unit

shear strain, top and bottom surfaces are traction free; and

(d) unit shear strain, tractions allowed on top and bottom
surfaces (not to scale).

The results for all cases are presented in Table 1.
The results for isotropic and bimaterial beams are
compared with exact beam theory solutions. The
shear correction factors used for computing Ass are
0-833 and 0-555 for the isotropic and bimaterial
beams, respectively (Whitney'®). It may be seen from
Table 1 that the present unit-cell analysis is able to
predict the stiffness coefficients of isotropic and
bimaterial beams. The axial and bending stiffness
coefficients are predicted accurately.” As expected the
shear stiffness predictions have errors, but they are
very minimal. One may note the severity of
deformation at the corners of the unit cell when
subjected to a constant shear strain leaving the top
and bottom - surfaces traction-free (Figs 3(c), 4(c) and
5(d)). However, when shear tractions are allowed on
the top and bottom surfaces of the unit cell, the

V. Marrey

(a)

(b)

(©)

(d)

Fig. 4. Deformed unit cell of the bimaterial beam subjected

to (a) unit extensional strain; (b) unit curvature; (c) unit

shear strain, top and bottom surfaces are traction free; and

(d) unit shear strain, tractions allowed on top and bottom
surfaces (not to scale).

distortions at the corners disappear (Figs 3(d), 4(d)
and 5(e)). Then, what is obtained is actually the shear
modulus G, and not the beam shear stiffness Ass. The
shear modulus of the textile beam is found to be
3-023 GPa. This will yield Ass=Gh=544X
10N m™", whereas the actual Assis 9-21 X 10° N m™!
(see K3 in Table 1). From K, of the textile beam one
may extract the Young’s modulus E, as K;,/h, which
will yield E,=15-42GPa. If this value is used to
determine the flexural stiffness as D;; = E,h*/12, one
will obtain D;;=7-50N —m, whereas the actual
flexural stiffness is equal to 5-41N —m (K,, in Table
1). This further illustrates the importance of the
present analysis in predicting beam stiffness properties
directly.

The stiffness properties of the textile composite
were also estimated using a procedure similar to the
mosaic model." They are compared with results
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obtained from the present unit cell analysis in Table 1.
Figure 6 depicts the idealization made in the mosaic
model. The unit cell is divided into five segments,
each one idealized as laminates consisting of 0° and
90° layers with different stacking sequences. Refer-
ence 1 describes procedures for computing Ay, By,
and D;; (K;;, K, and K, in this paper’s notation) of
woven composites using the mosaic model. The
mosaic model can be extended to compute Ass(Kss)
also. The stiffness matrix of each segment of the unit
cell is computed using the laminate analysis. Then the
compliance of the composite is the length-weighted
average of compliances of the five segments:

is1=(7) 3 LOIs]0 (26)

where L; is the length of the ith segment, and L is the
length of the unit cell.

From Table 1 it can be seen that the mosaic model
predicts Ks3(Ass) reasonably well. The reason for lack
of agreement in K;;(4,;) and Kx(D;;) can be
attributed to the fact that the fiber undulations are not
accounted properly, and a major portion of the yarn is
modeled as 0° laminate in the mosaic model, which
tends to over predict the in-plane axial and flexural
stiffness properties.

The coupling coefficients K;; and K,; were
identically equal to zero for all three beams in all the
methods used in this study. It is not a surprising result
for isotropic and bimaterial beams. In the case of
textile beam, the yarns are symmetrical about a
vertical line passing through the center of the unit cell,
and that removes the coupling between in-plane forces
and transverse shear deformation. Further the
extension/bending coupling By; (represented by K;,)

Fig. 5. Textile beam: (a) undeformed unit cell, and = fomeid
deformation under (b) unit extensional strain; (c) unit
curvature; (d) unit shear strain, top and bottom surfaces are () deg. laminate [:l 90 deg. laminate atrix material
traction free; and (e) unit shear strain, tractions allowed on

top and bottom surfaces (not to scale). Fig. 6. A mosaic model of the unit cell (not to scale).

Table 1. Comparison of beam stiffness coefficients (SI units)*

Isotropic Bimaterial Textile
beam beam beam

Unit ce.ll Exact Unit cell Exact Unit cell Mosaic

analysis analysis analysis model
K 19-78 x 10° 19-78 x 10° 10.88 x 107 10-88 x 107 2776 x10° . 71-48x107°
K 0 0 40.05 x 10° 40-05 x 10° 0 0
K, 5-35 5-34 29.37 29-37 5-41 8-13
K 5-96 x 10° 577 % 10° 20.82 x 10° 21-12 x 10° 9-21 x 10° 8-14 x 10°

“ The coupling coefficients K,; and K,; are equal to zero in all cases.



68 B. V. Sankar, R. V. Marrey

also did not exist for the textile beam. This is again
because of the symmetry about the center. The
bending/extension coupling that exists in the left half
of the unit cell will be nullified by an opposite
coupling effect exhibited by the right half of the unit
cell. One should note that these are effects averaged
over the length of the unit cell. In fact Fig. 5(b)
illustrates the existence of bending/extension coupling
in the middle portion of the textile composite unit
cell.

There are several interesting features in the
deformed shapes of the unit cells presented in Figs
3-5. Figures 3(a), 3(b) and 3(d) for the isotropic beam
represent pure extension, pure bending and pure
shear, respectively. In Fig. 3(c) concentrated forces
act at the corners of the unit cell and they cause
localized distortion. One may note that the left edge
of the deformed unit cell fits the right edge as pieces
of puzzle fit together. This is because of the periodic
displacement boundary conditions applied to the unit
cell. In the case of a bimaterial beam, plane sections
remain plane for pure extension and pure bending
(Figs 4(a) and '4(b)). There is a marked difference
between Figs 4(c) and 4(d). In Fig. 4(c), the beam is
more or less in a state of constant shear strain, which
is typical of composite beams. In Fig. 4(d) the bottom
layer shears significantly, and the top layer undergoes
minimal shear deformation. This is because of the fact
the application of shear tractions on the top and
bottom surfaces of the unit cell, causes a constant
shear state within the unit cell. The bottom layer
being very compliant (Gp/Ghotom = 10) undergoes
severe shear strain compared to the top layer. As
mentioned earlier the existence of localized
bending/extension coupling in the textile beam can be
observed in Fig. 5(b).

5 SUMMARY

The unit cell of a textile composite beam was analyzed
to determine the flexural stiffness properties. The unit
cell was modeled using eight-node plane strain finite
elements. Three linearly independent deformations
were applied to the unit cell. Special constraint
elements were used to apply periodic boundary
conditions on the end faces of the unit cell. From the
forces required to create such deformations, the
extensional, flexural and shear stiffness of the beam
were computed. The method was verified by applying
to isotropic and bimaterial beams, and comparing the
results with the beam theory and the lamination
theory. The agreement was excellent. Then the
method was used to obtain the stiffness coefficients of
a plain weave composite modeled as a beam. The
transverse shear stiffness was determined by a
modified method in which the shear strain energy of
the unit cell in the finite element model was equated

to the shear strain energy in the beam model. The
beam example presented here should be considered as
a demonstration of the unit cell approach to predict
the flexural stiffness properties similar to Refs 5 and
10. In practice, one needs to find the complete
[A, B, D] matrices including the transverse shear
stiffness coefficients Ay, Ay and Ass. The present
technique has been extended to compute the [A4], [B]
and [D] matrices of textile composite plates by using
three-dimensional solid elements to model the unit
cell.'* Extension of the present method to predict
thermal conductivities and coefficients of thermal
expansion is also straightforward and is under way.
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