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ABSTRACT: The damping characteristics of prestressed composite beams with con-
strained viscoelastic damping layers on one surface of the beam are investigated both ana-
lytically and experimentally. The analytical method involves derivation of finite element
equations for the analysis of beam and plate structural elements with continuous or discon-
tinuous constrained viscoelastic damping layer with prestress. The experimental method
is an impulse-frequency response technique which is used on preloaded laminated beams.
Results for loss factors and natural frequencies of [90/90/0/90/90] and [903/03/903]s
T300/934 graphite-epoxy laminated beams with a 3M SJ-2052X constrained viscoelastic
tape attached on one surface are presented. Numerical results based on the finite element
prediction agree reasonably well with the experimental results under different tensile and
compressive preloads.

INTRODUCTION

f AMINATED COMPOSITE STRUCTURES used in aerospace, land and marinetransportation systems often encounter dynamic load environments. Thus, it
is always desirable for the composite structures to have high damping capacity.
Damping physically means energy dissipation as the structure is subjected to
vibratory deformations. There are a number of methods for designers to improve
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Figure 1. Laminated offset beam element.

damping (i.e., to take energy away from the structure). A detailed review of dif-
ferent damping mechanisms and the conditions under which they are effective
can be found elsewhere, e.g., Nashif et al. (1985). In this paper, a method for im-
proving damping capacity of laminated composite beams under preload using
constrained viscoelastic materials externally on the beam surface is described. It
appears that previous research on constrained layer damping has not included the
effect of preloads.
For most viscoelastic materials, dilatation is elastic and distortion (shear) is

viscoelastic (Plunket, 1983). Therefore, for viscoelastic materials, energy dissi-
pation is primarily due to shear deformation. The main reason that constrained
viscoelastic layers are used instead of unconstrained (or free) viscoelastic layers
is to increase the shear deformation in the viscoelastic layer in order to improve
damping. In the present research, the potential for using constrained viscoelastic
materials to improve structural damping ability of laminated composite beams
under prestress is examined. As shown in Figure 1, finite elements with nodes
offset to either top or bottom surface of the beam are used for modeling the con-
strained layer and the base structure. Two-dimensional solid elements are used
for modeling the viscoelastic layer sandwiched between the base structure and
the constraining layer. The finite element model takes into account the preloads
that are applied to the structure. An experimental technique for measuring fre-
quencies and structural damping with prestress on the base structure is also pre-
sented. Numerical results for graphite-epoxy laminated composite beams under
preload are obtained using both the analytical and experimental methods. While
the experimental results were obtained at preloads beyond those required for first
ply failure in the laminate, the present analytical model does not include the ef-
fects of ply failure. Nevertheless, reasonably good agreement is observed be-
tween the analysis and the experiments.

FINITE ELEMENT FORMULATION OF STRUCTURES
WITH INITIAL STRESSES

In this section, the finite element equations of a structure about a linearly pre-
stressed configuration are developed. The formulation is based on the principle
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of incremental virtual work (Fung, 1965; Bathe, 1982). Forces due to motion of
the body are accounted for in the DAlembert sense. This principle can be ex-
pressed in the following equation:

where

T,, = Cauchy stress tensor
e’J = infinitesimal strain tensor

f = body force
t, = surface traction
u, = infinitesimal displacement from equilibrium configuration
u, = acceleration
e = mass density

The Cauchy stress tensor T, is defined in the unknown deformed configuration.
In the current configuration, in general, T,, cannot be obtained by simply sum-
ming the incremental stress components due to increments in strains, since rigid
body rotation will change the components of Cauchy stress tensor. Therefore, for
structures with preload, the second Piola-Kirchhoff stress tensor-a symmetric
second order stress tensor which is essentially rotation-invariant for the small
strain, large deformation case-can be used with appropriate constitutive rela-
tions.
The basic principles involved in the derivation can be found in Fung (1965) and <

Bathe (1982), and their application to the present problem in Rao (1991). The final
form of the virtual work equation is:

where C,,k, are the elastic coeflicients and S,, are components of the second Piola-
Kirchhoff stress tensor.
From the first term in Equation (2), the structural elastic stiffness matrix [KB] ]

can be derived. The second term presents a stiffness matrix [K,,;] due to the initial
loading. It should be emphasized that the [K,,;] matrix depends only on the pre-
load and geometrical configuration and is independent of the material property of
the element. The third term of Equation (2) is used to derive the mass matrix.
The fourth term due to the effect of the body force can be omitted and the fifth
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term is due to the surface loading on the beam. In the following section, deriva-
tions of element matrices of constrained beams with prestress will be presented.

DEMOTIONS FOR CONSTRAINED COMPOSITE BEAMS

The base structure and the constraining layer are modeled with offset beam ele-
ments (Sankar, 1991) and the viscoelastic core is modeled with two-dimensional
plane solid elements.

Laminated Offset Beam Element

The element can be described as a three-node, seven-degree-of-freedom offset
beam element as shown in Figure 1. In Figure 1, u is the nodal displacements in
the x-direction, w is the nodal displacements in the z-direction and 0 is the rota-
tion about the y-axis of a line normal to the x-axis. The element is shear-
deformable, which is important in modeling fiber-reinforced composites. The
offset ability allows for the beam nodes to be offset to one surface of the beam,
so that they coincide with the nodes of the adjoining element on the surface of the
beam. The assumed displacement field is

In Equation (3) uo and ~ are defined by using linear interpolation functions

where u,, u3, 1/;1 and 1/;3 are corresponding nodal displacements. The transverse
deformation w is defined by using quadratic interpolation functions

where w; (i = 1,2,3) are nodal displacements. The non-zero strain components
are obtained from the strain-displacement relations
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The non-zero stress components are expressed in displacement components in
the form

ELEMENT STIFFNESS MATRIX [KJ
By using Equations (6) and (7), the first term of the virtual work expression of

Equation (2) can be written in matrix form as

where the vector {E} and the matrix [G] are given by

The element stiffness matrix due to incremental strain is derived from

A 3 x 3 Gaussian quadrature can be used to reliably evaluate the element stiff-
ness matrix. In Equation (11), [N] is an interpolation function matrix and [P] is
a matrix of partial differential operators. Their detailed expressions for [N] and
[P] are given in Bathe (1982), and documented in Rao (1991).
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INITIAL STRESS MATRIX [KG]
The presence of an initial stress in a structure modifies the stiffness of the

structure. Physically, this effect represents the coupling between the in-plane and
out-of-plane deformations. The second term in Equation (2) can be written in
matrix form

where [S] is the initial stress matrix and is given by

By substituting Equations (13) and (14) into (12) we obtain

where
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In terms of nodal displacements, the second term can be written as

The geometric stiffness matrix can be evaluated by using the Gaussian quadrature
scheme, as in the case of the elastic stiffness matrix [K],*.

MASS MATRIX
The mass matrix [M] is calculated in a similar manner from the third term of

Equation (2). The difference between the present derivation and the formulation
for conventional elements is due to the offset factor. The acceleration field (1i) is
approximated by using the same interpolation functions [N] that were used for
the displacement field {u}, i.e., within each element we can write

Using Equation (18), the third term of Equation (2) becomes

where

From Equations (18)-(20) we obtain
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Therefore, the consistent element mass matrix can be calculated from the expres-
sion

The entries in [.4] are given by

Six-Node Isoparametric Plane Solid Element

The plane solid element was derived to model the viscoelastic damping layer
in damped sandwich beams, so it is required to be compatible with the laminated
offset beam element (see Figure 2). The plane element is a six-node ten-degree-
of-freedom element and is shown in Figure 3. In order to be compatible with the
beam element, the order of interpolation functions was chosen as described
below. The displacements u in the x-direction were interpolated by using linear
interpolation functions of x and z. The nodal displacements in the z direction, w,
were interpolated using quadratic interpolation functions in the x-direction and
linear interpolation functions in the z-direction. The use of higher order inter-
polation for w in the x-direction improves the performance of the element in situ-
ations where the loading causes w to be much larger than u, as in beam bending
problems.

ELASTIC STIFFNESS MATRIX AND MASS MATRIX
A detailed development of the elastic element stiffness and the mass matrix for

the plane elements in general can be found in Bathe (1985), and particularly for
this element in Rao (1991). Only a brief derivation is included in this section.

Figure 2. Damped beam finite element model.
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Figure 3. Two-dimensional plane solid.

Within each element, the displacement field is assumed to be of the form

where [N] is the matrix of interpolation function, and I Ul’ is the vector of ele-
mental degrees of freedom.
As in the development of the elastic stiffness matrix [K]e of the offset beam ele-

ment, we can still use the general expression

where [P] is the matrix of differential operators and [G] the constitutive matrix
for an isotropic material:
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The element stiffness matrix [K]e, after making appropriate substitution into
Equation (25), can be derived in terms of [N], [P] and [G]:

The element mass matrix [M], after making appropriate substitution in the third
term of Equation (2), is derived as

The [K], and [M]&dquo; matrices are calculated by using an appropriate Gaussian
quadrature rule.

INITIAL STRESS MATRIX
The initial stress stiffness matrix [K~] of the plane solid element is calculated

from the second term in Equation (2):

where

and [P] is the matrix of differential operators such that
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CALCULATION OF LOSS FACTOR

The loss factor 71 of a structure executing steady state vibration is defined in
terms of energy as

where D is the energy dissipated per cycle and W is the maximum (peak) energy
stored in the structure. In general there are two approaches which are commonly
used to evaluate the loss factor 17 from our finite element program. These ap-
proaches will be discussed in this section.

Direct Frequency Response Method

In the direct frequency response method, a forced vibration over a range of fre-
quencies is considered, and a theoretical response spectrum is generated from
which the overall damping of the system is calculated. For the forced vibration
problem, the objective is to predict the linear, damped, steady-state response of
structures about a linear preloaded equilibrium configuration. Since the core
material is viscoelastic, the complex modulus approach is used and the governing
differential equations are complex. Following finite element discretization, the
equations governing the time dependent response of a prestressed body are ob-
tained as

where

[K] = global complex stiffness matrix
[K8 = global geometric stiffness matrix
[M] = global mass matrix
[U) = global displacement vector (complex)
101 = global acceleration vector (complex)

A harmonic excitation force is considered, i.e.,

where w is the forcing frequency, t is the time and i = ( -1)&dquo;2. The response due
to the applied force is assumed to be harmonic and at the excitation frequency.
The equation of motion reduces to
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Figure 4. Real part of the response spectrum near a natural frequency.

The matrix on the left hand side is called the displacement impedance matrix.
For each frequency of excitation, the displacement per unit applied force is
calculated by solving the system of complex-valued simultaneous linear equa-
tions, and the response function is thereby generated. Loss factor is calculated by
using a single degree-of-freedom curve-fitting approach on the real part of the
generated response spectrum as shown in Figure 4.

Modal Strain Energy Approach
The second technique is based on an eigenvalue problem which is derived by

setting the forcing terms to zero, i.e.,

The analysis can be performed based on the associated complex eigenvalue prob-
lem or the simplified real eigenvalue problem. In the complex eigenvalue
method, the resonant frequencies and complex mode shapes of the damped
system are determined by solving the complex eigenvalue problem. The loss fac-
tor for vibration about a prestressed configuration is calculated by
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where

n = total number of elements

11 = loss factor of the ith element

El- = elastic strain energy stored in ith element calculated as 1/2 {u}T [K] {u}
E, = sum of elastic strain energy and strain energy due to preload in the i th ele-

ment calculated as 1/2 {u}T [K + K~] {u}

In general, the modal methods provide information about a basic and more gen-
eral behavior of the damped structure, over a wide frequency range, without ac-
counting for the actual loading situation. The direct frequency response method
will provide detailed response information in the specified range of interest. In
this paper the modal strain energy method was used to determine the loss fac-
tor 11.
The variation of material properties of the viscoelastic damping material with

frequency is very pronounced, and in eigenvalue-based techniques, the frequen-
cies of interest are not known a priori. Therefore, an iterative procedure has to
be used, starting with a rough estimate of resonant frequencies. The material
properties of the viscoelastic material are updated corresponding to the
calculated resonant frequencies. The procedure is repeated to convergence for
each mode of interest. System loss factors calculated without iterating will pro-
duce correspondingly inaccurate results. This is one problem which is avoided in
the direct frequency method, since the loading frequency is known ahead of time.

EXPERIMENTAL INVESTIGATION

The objective of the experimental program was to measure the effects of axial
preloads on the flexural frequencies and loss factors of composite specimens with
and without surface damping treatments. Although it was decided that experi-
ments would include preloads beyond those required for first ply failure, it was
realized that the analytical model might not be valid after such failures. Two dif-
ferent types of specimens were designed and fabricated from unidirectional
Fiberite T300/934 graphite/epoxy prepreg tape using an autoclave-style press and
the manufacturers’ recommended cure cycle (Gibson, Deobald and Suarez,
1985). One specimen type was designed to produce data for tensile loading
beyond first ply failure, while the other specimen type was designed to produce
data under both tensile and compressive preloads in the linear range below first
ply failure. In both cases, the surface damping treatment was 3M SJ-2052X
damping tape having a 0.005 inch (0.127 mm) thick ISD 112 acrylic polymer vis-
coelastic adhesive and a 0.01 inch (0.254 mm) thick dead soft aluminum backing
as the constraining layer. The damping tape was applied on one side of the com-
posite specimen along the full length of the specimen between the clamping fix-
tures in the testing machine.
The first type of specimen was a 5 ply [90,/0/90,] laminate which was designed

to be loaded up to and beyond first ply failure in a Monsanto Tensometer 20, a
benchtop universal testing machine (Figure 5). In order to determine the effects

 at UNIV OF FLORIDA Smathers Libraries on May 26, 2009 http://jrp.sagepub.comDownloaded from 

http://jrp.sagepub.com


1036

Figure 5. Apparatus for impulse-frequency response testing prestressed flexural speci-
mens.
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of first ply failure on the frequencies and damping of the composite structure, the
transverse (90°) plies were placed on the outer surfaces of the specimens for
visual observation of first ply failure. Such a thin laminate would also ensure that
the first ply failure loads would be low, and that resulting friction damping in the
specimen clamping fixtures would be minimized.
A second type of specimen was used to generate experimental data on frequen-

cies and damping under both tensile and compressive preloads for comparison
with the finite element predictions. The first type of specimen would not be
suitable for these experiments because the buckling load under compressive pre-
load is too low. A thicker laminate was required in order to withstand both tensile
and compressive preloads. Thus, it was decided that the second type of specimen
would be an 18 ply [90]/0]/90]]& laminate.

In both types of specimens, load transfer shoulders consisting of Epon 828
epoxy resin/V40 hardener (100:80 parts by weight) were molded on the ends of
the specimens to match machined notches in the clamping fixtures. The shoul-
ders were designed to have shear strengths greater than the predicted composite
first ply failure loads.

Frequencies and loss factors were measured using an impulse-frequency re-
sponse technique which has been described in detail in previous publications,
e.g., Suarez and Gibson (1987). The same technique has also been used to study
the effects of surface damping treatments on composite structures without pre-
loads (Mantena, Gibson and Hwang, 1989). Material property data for speci-
mens and damping tape are also given in the above reference. In the current ap-
plication, the preloaded specimen is excited in flexural vibration using an
impulse hammer which has a piezoelectric force transducer in its tip (Figure 5).
The specimen response is measured by a non-contacting eddy current proximity
transducer, and both signals are fed into a frequency spectrum analyzer. By using
the half-power bandwidth method at the resonant peaks in the frequency response
function, the resonant frequency and the loss factor are determined.

RESULTS AND DISCUSSION

Structural damping of composite beams subjected to an axial preload was eval-
uated by using the finite-element approach described in the previous sections and
the modal strain energy method. Some of the results were compared with the ex-
perimental results. Results of effects of different parameters such as length of the
damping treatment and preload, on the overall damping of the composite beam
were presented.
Figures 6 and 7 show the effect of preload on frequency and loss factor (damp-

ing) for a 3M’s SJ-2052X damping tape starting at the fixed end (a = 0) with a
length of 0.4L (b = 0.4L, L = length of the beam) of the graphite-epoxy com-
posite beam of stacking sequence [90/90/0/90/90], length 0.2032 m, width
0.01905 m and thickness of 0.00064 m. For the static part of the loading, the beam
is fixed at one end with an axial load acting at the free end, and for the dynamic
part of the loading, the beam is fixed at both ends in Figure 6 and fixed-hinged
ends in Figure 7. From Figures 6 and 7 we notice that damping decreases with
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Figure 6. Variation of frequency with preload.

Figure 7. Variation of loss factor with preload.
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increasing preload and the frequency (or stiffness) increases at the same time.
Decreased loss factor alone does not necessarily result in increased vibration
amplitude since dynamic response depends on both stiffness and damping. How-
ever, for a given preload, the displacement is always considerably smaller when
damping treatment is present. More numerical results for different values of a
and b, which show the effects of preload on loss factor and frequency can be
found in Rao (1991).

Figure 8 shows the experimentally determined effects of tensile preload on flex-
ural damping and first mode flexural frequency, respectively, for the 5 ply
[902/0/902] graphite/epoxy specimens. For the untaped specimen, the loss factor
shows an initial drop of about 70 % under axial loading up to about 65 % of the
estimated first ply failure load. The loss factor then steadily increases until the
load is beyond the estimated first ply failure load. This increase is thought to be
due to matrix crack damage in the outer transverse plies, which we have observed
in previous research as well (Mantena, Place and Gibson, 1985). Cracking
sounds were also noticed at around 80% of the estimated first ply failure load.
With the damping tape applied, the change in loss factor with load in Figure 8 is
initially the same as without tape. The loss factor does not increase after first ply
failure, however. This is probably due to the fact that the baseline damping due
to the tape is high enough to mask out any increases due to matrix cracking in the
composite base structure. This is further proof of the importance of the damping
treatment.

As shown in Figure 8, the increases in resonant frequency with increasing axial
preload were quite large, with upward shifts of about 250 % at the estimated first
ply failure load. Changes in frequency of such a flexible member under axial load
can be predicted quite accurately by using a one-dimensional wave equation for
a vibrating string under tension-the natural frequency turns out to be propor-
tional to the square root of the tensile load.

In order to help explain the experimental results on the effects of preload, the
effects of both tensile and compressive axial preloads on damping and frequency
of [903/O3/903]s graphite epoxy specimens with and without SJ-2052X damping
tape were determined both experimentally and analytically. Analytical results
from the University of Florida finite element model and modal strain energy
method are compared with experimental results from Wayne State University in
Figure 9. Experimental and analytical results show, with good agreement, that
with increasing tensile preload, the loss factor decreases and the frequency in-
creases. An increasing compressive preload has the opposite effect. Similar
results were reported for viscoelastic sandwich beams by Sato et al. (1986).
There is consistently more scatter in the experimental data for compressive load-
ing, possibly because of inherent instability of the compressively loaded system.
The crossover of curves for frequency versus compressive preload with and
without tape is seen in both analytical and experimental results. The agreement
between experimental results and theoretical predictions is very encouraging.

Finally the finite element program can also be expanded to laminated plates
with constrained viscoelastic damping layers. Further development of the finite
element program and the numerical results will be presented in the near future.
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Figure 8. Effect of axial preloads on natural frequency and loss factor of graphite/epoxy
specimens with and without damping tapes.
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Figure 9. Comparison of experimental and finite element analysis results on effects of ten-
sile and compressive axial preloads.
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