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Pointwise Energy Release Rate in Delaminated Plates

B. V. Sankar* and V. Sonik1"
University of Florida, Gainesville, Florida 32611

A laminated plate theory suitable for analyzing delaminations has been derived. The theory is used to study
the interaction between the top and bottom sublaminates in the intact region of a delaminated plate. Expressions
are derived for the jump in force and moment resultants that occur across the delamination front. Using Irwin's
crack closure integral, a simple expression for pointwise strain energy release rate G along the delamination front
has been derived. The expression suggests that the G at any point on the delamination front is the difference
between the plate strain energy densities behind and ahead of the delamination front. An estimate of error in
computing G using plate theories is obtained by comparing the J integral obtained using exact stress fields and
plate stresses. The procedure for computing G is first verified by applying it to double cantilever beam specimens
(DCB) and elliptical delaminations in isotropic plates for which solutions are available or can be computed. Then
the method is illustrated for a stitched graphite/epoxy DCB specimen and also for elliptical delaminations in 0-deg
graphite/epoxy plates. The results demonstrate the usefulness of the present method in analyzing delaminated
coupons and structures.

I. Introduction

D ELAMINATIONS in composite laminates can occur during
fabrication or service, e.g., low-velocity impact. One way

of avoiding the deleterious effects of delamination is frequent in-
spection and repair/replacement, which is very expensive. On the
other hand the structures can be designed to be damage toler-
ant. Since most of the delaminations propagate in the same plane,
fracture mechanics principles can be successfully applied to de-
termine the loads at which a delamination will begin to grow.
The strain energy release rate G has been widely accepted as the
fracture parameter that characterizes delamination propagation. In
the case of three-dimensional structures, G has to be computed
at every point on the delamination front, i.e., "pointwise G" has
to be evaluated. This strictly requires three-dimensional analysis,
which can be quite expensive for practical problems. However,
in many applications laminated composites are used in the form
of plate-like structures, and we can take advantage of the plate
theories to compute the strain energy release rate distribution
along a delamination front. A similar approach has been used
for beams by various authors.1"6 Recently, Sankar and Rao,7
Davidson,8 and Davidson and Krafchak9 have extended the method
to plate problems. In the present paper we derive simple expres-
sions for the strain energy release rate distribution in terms of the
strain energy density of the sublaminates computed using plate
theories.

The issues involved in computing G from the three-dimensional
analysis have been discussed in detail by Atluri and Nishioka10 and
Shih et al.11 and summarized by Anderson.12 The G at a point on the
delamination front can be computed by evaluating the J integral on
a vanishingly small contour that lies on the plane perpendicular to
both the plane of delamination and the tangent to the delamination
front at the point in consideration.

In plane problems the difficulties in evaluating the aforemen-
tioned integral can be avoided by taking advantage of the path-
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independent nature of the integral.13 However, this is not possible in
three-dimensional problems. Shih et al.11 suggest a domain integral
representation of the aforementioned integral that is much suited
to finite element analysis. Banks-Sills14 has conducted an extensive
study of use of three-dimensional finite elements in linear elastic
fracture mechanics (LEFM).

In the present study we have focused our attention on issues in-
volved in computing pointwise G using laminated plate theories.
The emphasis is on rigorous derivation of jump conditions across
the delamination front and also the equivalence of the plate models
and three-dimensional analysis. A simple expression for pointwise
G in terms of the plate strain energy densities along the delamination
front has been derived. The method is verified by solving problems
for which solutions are available and then demonstrated for some
complex structures, including laminates with through-the-thickness
reinforcements.

II. Preliminaries
In this section we derive the constitutive relations and equilib-

rium equations for a laminated plate. The treatment is slightly dif-
ferent from the traditional approaches in which the middle plane
of the plate is used as the reference plane for defining the dis-
placement field. In the present approach the top or bottom plane
of the plate is used as the reference x\X2 plane. The deriva-
tions will mainly refer to a plate situated just above the reference
plane, i.e., the plate is bounded by the planes jc3 = 0 and h (see
Fig. 1).

The case where the plate surfaces are jc3 = 0 and —h can be
treated in an analogous manner. We will include the transverse shear
deformation as well as the thickness stretch mode introduced by
Whitney.15 Both indicial and vector notations are used for stresses,
force resultants, etc., in this paper, depending on the convenience
of presentation. In the following an underscore denotes a matrix,
|_-J denotes a row matrix, a superscripted T denotes matrix trans-
pose, and a suffix preceded by a comma denotes differentiation. The
displacement field in the plate is approximated by

(1)

The various (// are displacement of points on the reference plane,
0i and 92 are the rotations, and #3 is the thickness stretch, #3 is set
to zero, and we recover the standard shear deformation theory. The
strain field can be represented as

(2)
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Fig. 1 Crack front in a delaminated plate.
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The force and moment resultants are defined as

rh
(Nij,Mij)= 0-/7.(l,*3)d*3, (1,7 = 1,2,3) (6)

Jo
It should be mentioned that the limits of integration in Eq. (6) are
0 and h, and hence the moment resultants are about an axis on the
reference xix2 plane. It will be sometimes convenient to denote the
stresses and the force and moment resultants as pseudovectors a,
N_, and M_ containing elements au, Na, and Ma, respectively. The
relation between the two sets of notations, e.g., Na and Ny, is given
by a = i for i = 7', and a = 9-i-j otherwise. In that case the force
and moment resultants are

(N_,M) = I £(!,:
Jo

The stress-strain relations are

a = c 6

(7)

(8)

Using Eqs. (2), (7), and (8), one can derive the laminate constitutive
relations as

(9)

where the various stiffness matrices of the laminate are given by

(A,jB,D)= f c(l,*3.*3
2)d*3 00)

By denoting the force and moment resultants as £, the plate defor-
mations as E_, and the laminate stiffness as C, Eq. (9) can be written
in a shorthand notation as F_ = C_ E_.

The stress equilibrium equations (neglecting body forces) are

<ry ,;=0, (i,7 = l ,2,3) (11)

Integrating Eq. (11) through the thickness of the plate we obtain

#/«,«+*/= 0, (i = 1,2, 3; a = 1,2) (12)

where t; are the sum of surface tractions acting on the top and bottom
surfaces of the plate:

i, x2, h) - cr3f (*i, *2, 0) (13)

By multiplying Eq. (11) by jc3 throughout and integrating through
the thickness, we obtain

(i = 1,2, 3; a = 1,2) (14)

Line Tractions

X3

Line Couples
Fig. 2 Line tractions and couples on the bottom sublaminate.

where the various moments m/ are given by

nti = ha$i(x\, x2, h) (15)

The previous equation derived from the stress equilibrium equations
does not account for distributed couples that can be applied onto a
plate. In fact, there are two sets of couples that can be applied:
/xi(*i, JC2) about the jci axis and /x2(jci ,x2) about the x2 axis. They
can be added to the couples mi and m2 in Eq. (14). Because the
sign conventions for the various m and /z are different, //2 has to
be added to mi and /zi to — m2. A couple about the x>$ axis cannot
be applied because we do not have rotation about the *3 axis as a
degree of freedom (drilling DOF) in the present plate theory. The
plate strain energy density & is defined as the strain energy per unit
area of the plate:

*= (16)

where the integrand is the strain energy density at a point in the
plate. By substituting from Eqs. (2) and (10) into Eq. (16), we can
derive the following two expressions for 4>:

(17)

When concentrated forces and couples act on the plate, they lead to
jump in the force and moment resultants. In the following we derive
a relationship between forces and couples acting along a line and
the jump in force and moment resultants across that line. Consider
that a set of line forces and line couples act along the line jci = 0 as
shown in Fig. 2 such that

= fi(x2)8(xi) = 1,2,3) (18)

(19)

where 8 is the Dirac delta function.
Substituting for r/ from Eq. (18) into Eq. (12) and integrating from

—A*i to H-AjC! we obtain
,+A*, ,-.

/ *n.id*1+/
J —AJCI v —L

Taking the limit as A*! -> 0,

'fLt

= l, 2, 3)

(20)

(21)

where {•} denotes the jump in the function inside the braces across
the line jci = 0. Similarly, using Eqs. (14) and (19), one can show
that

The derivations given thus far pertain to a laminate situated just
above the reference plane. For a laminate situated just below the
reference plane the only change will be in the limits of integration
in Eqs. (6), (7), and (10), from -h to 0 instead of 0 to h.



1314 SANKAR AND SONIK

III. Analysis of a Delaminated Plate
We propose to use the plate theory developed herein for the anal-

ysis of delaminated plates, in particular to compute the strain en-
ergy release rate distribution GO) along the delamination front. We
assume that 1) the delaminated sublaminates and the parent lam-
inate are large enough compared with the plate thickness, 2) the
delamination front is a smooth curve without any sharp corners or
discontinuities, and 3) the distance between any point of application
of external loads and the delamination front is large compared with
the plate thickness. If these assumptions are valid, then the displace-
ment of points away from the delamination front computed using
the plate theory will be sufficiently accurate and hence the estimate
of total strain energy in the entire plate. The delaminated plate can
be considered as consisting of two laminates, the top and bottom,
separated in the region of delamination, and connected to each other
(intact) elsewhere (see Fig. 1). The delamination plane is used as
the reference plane (jcijc2 plane) for deriving the equations of the
top and bottom sublaminates and also the intact laminate.

Next we look at the nature of interaction between the top and
bottom laminates in the undelaminated (intact) region. Let C^ and
C(/;) be the stiffnesses of the top and bottom sublaminates, respec-
tively. Then it is obvious from the definition of C_ in Eq. (10) that
the stiffness of the intact plate C_ = C('} + C_(h}. This is because the
limits of integration for the intact plate is from — hb to +ht, which
then represents the sum of integrals for the top and bottom sublam-
inates. Let F_, F_(t\ and F_(h) be the force and moment resultants in
the intact, top, and bottom laminates respectively. From the defini-
tion of force and moment resultants in Eq. (7) it can be seen that
F_ = F_(t) + F_(h\ The deformations in the top and bottom plate are
the same and equal to the deformation of the intact plate, i.e., _E('} =
E_(h} = E. From these the reaction between the force resultants in the
top laminate F_(t} and the total force resultants F_ can be written as

X3

— £-(0 c~lF (23)

Thus one can see that the force resultants in the top (or bottom)
laminate are a linear combination of the force resultants acting on
the intact plate. Thus, as long as no singular external tractions or
couples act on the plate, the interaction between the top and bot-
tom laminates in the intact region is characterized by smooth and
nonsingular tractions and couples.

Next we will consider the situation near the delamination front.
For the purpose of convenience we will assume that the delamination
front is locally tangential to the *2 axis as shown in Fig. 1. Because
the deformations can be different in the top and bottom sublaminates
behind the crack front, there will be discontinuities (jumps) in the
forces at the crack front. These jumps can be related to the line forces
and couples acting between the two sublaminates at the crack front.
Referring to Fig. 3 and Eqs. (21) and (22), the jump in the force
resultants can be expressed as

/, = [< - A

gi = [M<3) -

(i = 1, 2, 3) (24)

(i = l, 2) (25)

In deriving the previous two expressions, we have used the equilib-
rium relation

4. (26)

Next we apply Irwin's crack closure integral16 to compute the
strain energy release rate. We will allow the crack front to grow
by an arbitrary distance A/ (s) along the crack front. Consider a
small portion of the delamination front that is locally tangential
to the jc2 axis as shown in Fig. 1. Let its length be As. We will
compute the work done in closing this small portion of the crack.
In applying virtual crack closure principle we consider the tractions
acting in between the impending crack surfaces over a small area
ahead of the crack and multiply by the relative crack surface opening
displacements at corresponding points behind the crack, and take
the limit as this area or crack extension tends to zero. In doing so the
work due to the distributed tractions and couples will vanish unless
they exhibit a singular behavior at the crack tip. We have shown

Sublaminate 4

Sublaminate 1

Sublaminate 3

Sublaminate 2

Fig. 3 Zero-area path for computing the J integral.

in the beginning of this section [Eq. (23)] that the tractions and
couples acting between the sublaminates in the intact plate have
regular behavior. Therefore, they will not contribute to the crack
closure virtual work. However, there are line tractions and couples
acting along the crack front, and these will contribute to the virtual
work term. Thus, the work done is given by

3

AW = A y j l / / 4 ) (-A/,*2) - f//1} (-A/,*2)]

(27)

By adding and subtracting t//(0, jc2) and 0/(0, *2) in Eq. (27), we
obtain

- U, (0, JC2) - t//" (- A/, JC2) + U, (0, JCj)]

2

+ (2) A*&-K} (-A/> *2> - *<-(°' ̂ )
-6^(-Al,x2) + 6i(0,x2)] (28)

We define the strain energy release rate computed from the plate
theory Gp as

- lim - -
P A/-K) A/AS

A.v->()

Substituting for AW from Eq. (28) into Eq. (29), we obtain

(29)

(30)

In deriving Eq. (30) we have used Eqs. (24) and (25) and also the
definition of the derivative of displacements, e.g.,

U

=

A/

We will use the force equilibrium Eq. (26) and also the fact that the
deformations in sublaminates 2 and 3 are the same, i.e., £_(2) = E^ ,
to modify Eq. (30) as follows:

G p = | -

(32)



SANKAR AND SONIK 1315

In Eq. (32) the sum of the first and third terms on the right-hand side
can be written as [£(4) - F_(3)]T [£(4) -£(3)], and the sum of the sec-
ond and fourth terms can be written as [£(1) - £(2)]r [£(1) - £(2)].
The explanation for this is as follows. We have already established
that only NH and M/i can be discontinuous across the delamination
front. Considering the terms in the deformation vector £, we find [//
and Oj have to be continuous at the delamination front. In the defor-
mation gradients, the derivatives with respect to X2 (the delamination
front is assumed to be tangential to jc2) have to be unique along the
x2 axis and hence continuous across the delamination front. How-
ever, the derivatives with respect to the coordinate normal to the
delamination front (jq in this case) can be discontinuous. Thus C//;i
and 9iti can be discontinuous. The terms on the right-hand side of
Eq. (32) represent the product of jumps in the force resultants and
deformations. By adding the jump in the continuous terms (which is
equal to zero) both in the force F_ and deformation £, we can write
Eq. (32) as follows:

(33)
The previous expression can be further simplified by using the equi-
librium condition £(1) + £(4) = £(2) + £(3) , the compatibility con-
dition of the intact laminate, £(2) = £(3), and the two reciprocal
relations £(1)r £(2) - F_^T E_w and F_^T E_(3) = £(3)T £(4)- [The
reciprocal relations are the direct consequence of symmetry of the
laminate stiffness matrix <2 and also the fact that (7(1) = C(2) and
C(3) = C(4)]. The simplified version of Eq. (33) is

Gp(s) = (34)

In arriving at Eq. (34) we have used Eq. (17) for the laminate
strain energy density. Stated in words, the strain energy release rate
at a point on the delamination front is equal to the difference in
the strain energy densities behind and ahead of the front at that
point.

Equation (34) represents the pointwise strain energy release
rate in the context of the plate theory. We still have to show un-
der what conditions it is equal to the result obtained via three-
dimensional analysis. Let the actual strain energy release rate dis-
tribution obtained using a three-dimensional analysis be given by
G(s). For an arbitrary infinitesimally small delamination growth
given by A/ ( s ) the change in strain energy of the entire plate $p is
given by

= (f>G(s)Al(s)ds (35)

where the contour integral is taken around the delamination front.
Equation (35) is applicable only for the case where the loads remain
constant during the delamination growth. In the context of plate
theory we can write a similar expression for change in the plate
strain energy as

-i (36)

where AW is the crack closure work given by Eq. (27). By mul-
tiplying and dividing by Al(s)As in Eq. (36), taking the limit as
A/ (s) —> 0, and following the procedures used to derive Eqs. (27-
34), we obtain

= <bG (37)

According to the assumptions we have made in the previous section
regarding the applicability of plate theories for the present problem,
the change in strain energy A4>p computed by Eqs. (35) and (37)
should be equal for any arbitrary A/ (s). This can be true only if
Gp(s) is equal to G(s) all along the delamination front.

IV. / Integral for Plate Models
In three-dimensional crack problems the J integral is evaluated

around a contour F that surrounds the crack tip and is vanishingly
small:

= lim / (
r^()Jr

(38)

Let the value of the J integral evaluated around an arbitrary path
be denoted by Ja. Then Ja does not represent the strain energy
release rate. The difference between Ja and J can be derived as (see
Appendix)

_ 7 a = /-
JA

(39)

where the previous integral is evaluated over the area enclosed by
the path on the x\x3 plane (Fig. 1). For plane problems the stresses
and strains do not vary along the *2-axis, and the right-hand side
of Eq. (39) will be zero, thus making Ja equal to / for all paths of
integration.

It is interesting to note that Sankar and Rao7 evaluated the J
integral around a zero-area path surrounding the crack tip using
the stresses and displacements derived using the plate models and
obtained an expression for / that was identical to that given by Eq.
(34). Let us denote this by Jp to distinguish from the actual /. Now
we can derive the error involved in using plate models for computing
J (or G). Let us denote the error by Je:

Je = Jp-J (40)

Let us assume that there is a path that is away from the crack tip such
that along this path the value of Jpa evaluated using plate theories
is the same as the actual Ja. Then we can add and subtract this term
in Eq. (40) to obtain

Je = (Jp ~ ~(J- (41)

The terms in parentheses are actually the area integral defined in
Eq. (40). Substituting from Eq. (39) into Eq. (41), we obtain

J,=
*** plate

(42)

Equation (42) provides a measure of error in the J or G computed
using plate theories [Eq. (34)].

Again in the case of plane problems the area integrals in Eq.
(42) vanish and hence the error Je. Thus we are able to obtain the
exact G from beam or one-dimensional plate equations. Thus the
only condition that we need to satisfy while using beam models is
that there should be at least one cross section in each sublaminate
behind and ahead of the crack tip where the stresses match the exact
solution. Beam models have been used for computing G in plane
structures by several authors.2-3'5'17

V. Results and Discussion
Two sets of numerical examples were performed to demonstrate

the efficacy of the present method. The first set consisted of exam-
ples for which solutions are available or can be computed by other
methods, so that the present method of computing G distribution
can be verified. The second set of examples illustrates the useful-
ness of the method in solving some practical delamination problems.
All examples were carried out using nine-noded isoparametric plate
elements. Each node had 5 DOF, viz., three displacements in the
coordinate directions and two rotations derived using the shear de-
formable laminated plate theory. The thickness stretching term was
not included in the examples so as to compare with available results.
If the delaminated plate is modeled by more than two sublaminates,
then there will be multiple sublaminates above or below the de-
lamination plane. In that case the 63 term must be included in the
formulation.

The strain energy release rate distribution along the crack front
in a 0-deg graphite/epoxy double cantilever beam (DCB) is shown
in Figs. 4 and 5. The dimensions and material properties are shown
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Length, L = 0.1 m
Specimen Dimension : Width, W = 0 025 m

Thickness, h = 0.0033 m

_L

Fig. 4 Double cantilever beam subjected to end loads.
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Distance from free-edge
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Fig. 5 G distribution along the delamination front in DCB specimen.

in the figures. Figure 5 also includes the results for laminates with
through-the-thickness stitching, which will be discussed later. From
the results for the unstitched laminate one can note that the G is
higher at the center of the laminate and drops to a lower value to-
ward the edge. This is similar to the behavior observed by Raju et
al.18 using a three- dimensional finite element analysis. This also ex-
plains the thumbnail shape that a straight delamination acquires in
DCB specimens. It should be mentioned that we have used contact
elements in the vicinity of the specimen edge to avoid interpenetra-
tion of the nodes of top and bottom sublaminates of the DCB, and
this has resulted in a smooth variation of G unlike that in Ref. 7.

The second example is an isotropic square plate containing an
elliptical delamination subjected to a pair of point forces normal to
the plate at the center of the ellipse. The plate size is 75 x 75 x 3.3
mm. The delamination is assumed to be in the midplane of the
plate. The minor axis of the delamination is kept constant at 15 mm,
and the ratio of the major to minor axis varies from 1 to 3. The
G distributions in the first quadrant of the delamination are shown
in Fig. 6 for various aspect ratios. Since no closed-form results for
G are available except for the circular delamination, we used an
indirect method to verify the results. The strain energy in a clamped
elliptical plate subjected to a central point force can be derived as

3>p = (±)PwQ (43)

Table 1 Comparison of results for elliptical delaminations

______Aspect ratio, AR = a/b___

W()(FEM),*10-5m
W0(exact),*10-5m
A<J>(FEM),N-m
A<f>(eXact),N-m

5.75
6.08
2.71
3.34

7.62
7.51
3.62
3.93

7.82
7.98
3.81
4.21

AR - Aspect Ratio = a/b

Concentrated load 400 N
Specimen: Aluminum
b = 0.015 m = constant

0 Hh-fr-i-f-*

0 20 40 60 80

Angle variation (degrees)
Fig. 6 G distribution along elliptical delaminations in isotropic plates.

where P is the load and u>o is the central deflection given by Young19:

Pb2(\ - v2)
Eh*

• (0.34773 -0.110933oO (44)

In the previous equation b is the minor axis, a is the major axis,
OL = b/a, h is the plate thickness, and E and v are Young's modulus
and Poisson's ratio. Let us assume that the delamination grows by
an arbitrary small distance A/ as the load P remains constant. (A/ is
assumed to be constant along the delamination front). The change in
strain energy of the plate can be computed by two different methods.
The simpler method involves differentiation of the expression for
the strain energy. Thus

(45)

The factor 2 in the previous equation is to account for the two
sublaminates of the plate. This method can be considered as an exact
one to compute the change in strain energy. The second method of
computing the change in strain energy due to delamination growth
is via fracture mechanics using Eq. (35). Since A/ (s) is constant
along the delamination front, it can be taken out of the integral sign
in Eq. (35). By comparing this expression with Eq. (45), we obtain

(46)

Thus the comparison of the two terms in the previous equation is a
measure of accuracy of the present method for computing G(s). The
results are given for various aspect ratios of the ellipse in Table 1.
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Specimen : DCB, 0 degree Gr/Ep
Dimension : 0.1 x 0.25 x 0.0033 m
Stitch thread : Kevlar 49

55,1,d
60,2,s
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Notation: N,P,x
N: Crack Length
P: Stitch Lines
x : s — Stitch Fail
x : d — Delamination
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Fig. 7 Progressive damage in stitched DCB specimens.
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i

200 -

Concentrated load 400 N AR = 4
Specimen : 0 deg Gr/Ep
b = 0.015 m = constant
\ 0.15m

20 60 80

Angle variation (degrees)
Fig. 8 G distribution along delaminations with different aspect ratios
in unidirectional graphite/epoxy plates.

From the results it may be seen that the central deflections from the
FEM compare very well with exact solutions, and the comparison
for A <&p is reasonable.

Having verified that the plate models work well for delaminated
plates, we applied the present method of computing G(s) to two

problems: 1) effects of stitches in reducing the strain energy release
rate, and 2) strain energy release rate in orthotropic plates due to
elliptical delaminations. The DCB specimen shown in Fig. 4 was
assumed to have through-the-thickness stitches. The stitches in the
delaminated region were modeled using uniaxial bar elements with
stiffnesses 1000 and 10,000 N/m. The stitch spacing and pitch are
given in Fig. 5. The G(s) was computed using Eq. (34). It may be
seen from Fig. 5 that the stitching has a profound effect on reducing
the strain energy release rate in delaminated specimens. Figure 7
depicts the load-deflection curve of a DCB specimen during pro-
gressive failure of stitches and delamination propagation.

Figure 8 depicts the variation of G in a 0-deg graphite/epoxy lam-
inate due to elliptical delaminations. The delamination is subjected
to a pair of opening forces at the center. The results are shown only
for the first quadrant of the ellipse. It may be noted that for a circular
delamination (aspect ratio AR = 1) the G is much higher at 9 = 0,
and hence there will be a propensity for the crack to propagate
along the 0-deg direction and become an elliptical delamination.
When the aspect ratio a/b is approximately 1.67, the G(s) is almost
constant along the delamination front, and the crack may grow in
a self-similar manner thereafter. In fact, elliptical delamination of
any arbitrary aspect ratio will eventually change shape to attain this
particular aspect ratio.

VI. Conclusions
A simple expression for the pointwise strain energy release rate

G along the delamination front has been derived using Irwin's crack
closure technique. The expression suggests that the G at any point
on the delamination front is the difference between the plate strain
energy densities behind and ahead of the crack front. The present
procedure for computing G is first verified by applying to prob-
lems for which solutions are known. The efficiency of the method
is illustrated for stitched double cantilever beam (DCB) specimens
and also for elliptical delaminations in composite plates. The re-
sults demonstrate the validity of the present technique in analyzing
delaminated coupons and structures.

Appendix
In plane solids where the stresses and strains do not vary along

the *2 axis, the following integral is equal to zero for any closed
contour on the JCiJt3 plane:

- T}MU) dS = 0 (Al)

where W is the strain energy density and 7} are the tractions. How-
ever, the same is not true for three-dimensional states of stress. For
three-dimensional cases we have20

dW 3W / A ^(A2)

Applying divergence theorem to the previous equation, we can show
that on any closed surface

- 7]«u) dS = 0 (A3)

Consider a prismatic body enclosed by two identical areas on the
jcijc3 plane separated by a small distance A*2. Applying the surface
integral in Eq. (49) to this prismatic body, we obtain

A;c2 ds —
/

f\ (o ^o/2w/ t i

_ _ dx2
dA = 0 (A4)

The first term on the left-hand side of the previous equation is the
contribution from the lateral surface given by n2 = 0. The second
term is from the bases of the prism given by n2 = ±1. Canceling
A;c2 throughout, we obtain

— TiUi i) ds = dA (A5)

Now consider the closed contour ABCD shown in Fig. Al. This
closed contour does not include the crack tip, and hence Eq. (A5)
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X3

Sublaminate 4

Sublaminate 1

Sublaminate 3

Sublaminate 2

Fig. Al The zero-area path and an arbitrary path for computing the
/-integral.

holds good for this contour. The integral on the left-hand side of Eq.
(A5) vanishes along the crack surfaces BC and DA. The integral
along CD can be written as negative of that along DC. We can
recognize the integral along AB as J and that along DC as Ja.
Hence Eq. (A5) becomes

[ d(o/2M,- Ja= I — -
JA dx2

dA (A6)

Equation (A6) represents a measure of difference between the zero-
area / integral and that evaluated around an arbitrary path surround-
ing the crack tip. It should be noted that the area integral in Eq. (A6)
does not include the crack tip.
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