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Abstract--The finite element-boundary element alternating method is extended to the analysis of a crack 
in a bimaterial test specimen. The crack is perpendicular to, and terminates at, the interface between two 
dissimilar materials. The finite element method is used to model the finite-size specimen without the crack. 
The displacement discontinuity method (boundary element method) is used to find the stresses in the 
infinite bimaterial medium due to crack surface tractions. The stress intensity factors are extracted by using 
a closed form solution for a semi-infinite crack in an infinite bimaterial medium opened by a pair of wedge 
forces. The alternating method is verified by solving several bimaterial crack problems for which solutions 
are known. A parametric study is performed for a specimen proposed for evaluating the fracture toughness 
of bimaterial interfaces. 

1. INTRODUCTION 
THE ANALYSIS of  the problem of  a crack perpendicular to, and terminating at, a bimaterial interface 
was first analyzed by Zak and Williams [1]. However, it has only been in recent years, since 
composites technology started gaining popularity, first in the aerospace industry and then in 
spin-off industries like the automobile and consumer industries, that engineers and scientists felt 
the need to formulate better failure prediction models for cracks in multilayered dissimilar 
materials. For  example, in a crossply laminate subjected to tension in the 0 ° direction, the matrix 
cracks appear  in the 90 ° layers and terminate at the 0o/90 ° interface [2]. Whether or not these cracks 
will propagate  under the given loading depends on the fracture toughness of  the interface. Further, 
the cracks have two options: to propagate along the interface or into the 0 ° layer, breaking the 
fibers. Similar situations arise in ceramic composites also [3]. 

Currently, there are analysis methods available for determining the near-tip stress field for 
cracks in infinite specimens, terminating at a bimaterial interface [4, 5, 13]. However, for cracks in 
finite-size specimens, a method for computing stress fields in the vicinity of the crack tip is yet to 
be developed. Also, the prediction of crack-tip propagation is an exercise that is yet to be 
accomplished for cracks terminating at bimaterial interfaces in finite-size specimens. In the present 
work, we are attempting to calculate a parameter  associated with the stress field in the vicinity of  
a crack tip terminating at the interface of  two dissimilar materials in finite-size specimens. This 
parameter  is believed to be responsible for crack propagation, and by means of  this quantity, it 
may be possible to establish crack propagation criteria for problems such as we are interested in. 
While it is possible to use "brute-force" finite element methods, these kinds of  problems need 
extremely fine meshes at the crack tips in order to capture the correct stress singularities. Hence, 
accurate stress intensity factors may be obtained only at the cost of  running time-consuming and 
cost-intensive finite element programs. 

While testing is a necessity for the understanding of failure mechanisms and also for 
developing failure criteria, efficient analysis methods must be available for extracting the crack tip 
parameters from the load and specimen geometry. Consequently, the present study is concerned 
with the development of  a practical analysis procedure for evaluating stress intensity factors in 
cracked bimaterial test specimens (see Fig. 1). Although a crack may have two crack tips, the term 
"crack tip" in the present paper  refers to the tip perpendicular to and touching the bimaterial 
interface. 
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Fig. 1. Various bimaterial test specimens. 

2. CRACK TIP STRESS FIELDS IN BIMATERIAL MEDIA 

The problem with cracks in a bimaterial medium is the nature of the stress singularity. If  both 
materials happen to be the same, then the stresses possess a 1/,,/7 singularity at the crack tip. In 
that case, the strain energy release rate exists and can be computed using conventional methods. 
From Zak and Williams [1] we know that in the case of bimaterial cracks, the near-tip fields vary 
a s  

O- , ~  r 2 - 1  

~ r ~, i ( 1 )  

where a, e and u are the near-tip stresses, strains and displacements, respectively, and r is the 
distance from the crack tip. In the case of bimaterial systems, 2, which is a parameter based on 
the stiffness properties of the two materials, can be lesser or greater than ½. The strength of the 
stress singularity, given by (2 - 1), can hence be lesser or greater than -½ for bimaterial systems; 
2 is exactly equal to ½ when both materials are the same, and the singularity for such cases is equal 
tO --½. 

The strain energy release rate, designated by G, can always be computed for cracks in 
homogeneous media. However, as the crack approaches a bimaterial interface, G goes to zero or 
infinity as shown in Fig. 2. So, in reality, this means that for cracks in bimaterial media, the 
parameter G cannot be computed and hence cannot be used as a crack propagation criterion. This 
has been borne out by the fact that 

G ~ b 2;~ - ,  (2) 

where b is the distance between the crack tip and the interface [6]. Hence, it may be observed that 
for 2 > ½, G ~ 0 as b --~ 0 and for 2 < ½, G --~ oo as b --~ 0. Hence, in both instances a finite value 
of G does not exist. 

Some suggestions for computing G in dissimilar media have been the use of  virtual crack 
closure or crack extension methods. The problem with these methods is that as the crack extension 
Aa becomes very small (see Fig. 3) the value of  G goes to zero or infinity, depending on which 
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Fig. 2. Schematic of  strain energy release rate variation for a cracked bimaterial beam under bending loads. 

medium the crack resides in. Hence, G does not approach a unique value as Aa goes to zero and 
so it cannot be used as a criterion. Ahmad [7] addressed the elastic problem of a crack normal to 
a bimaterial interface, using finite element analysis, in the context of unidirectional fiber 
composites. The structure of asymptotic crack-tip stress fields was obtained numerically. The 
numerical results thus obtained were then used to formulate criteria for assessing cracking normal 
to the fiber, interface splitting and fiber pull-out. 

In the present study, a finite element-boundary element alternating method is proposed for 
the problem of a crack terminating at a bimaterial interface in a finite sized specimen. In this paper, 
the symbol KI is used to designate the Mode I stress intensity factor for the case when 2 = ½ whereas 
the symbol Q~ is used to designate the corresponding factor for the cases when 2 is other than ½. 

3. METHODS OF ANALYSIS 

In this section, we describe the various analysis tools that have been used in determining the 
stress intensity factor Q~ in finite sized bimaterial specimens. A description of superposition and 
alternating methods can be found in Atluri and Nishioka [8, 12]. The basic principle of the 
alternating method in the present context is depicted in Fig. 4. Figure 4(a) shows a typical finite-size 
bimaterial specimen containing a crack and subjected to some external loading. We would like to 
consider this as a superposition of three different problems, as shown in Fig. 4(b)-(d). The loading 
case shown in Fig. 4(b) represents the external forces acting on the uncracked specimen. The 
specimen in Fig. 4(c) possesses a crack, and hence captures the singularities in the problem. It 
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Fig. 3. Application of  crack closure method to compute G: (a) crack perpendicular to the interface; (b) 
crack parallel to the interface. 
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Fig. 4. Superposition scheme for alternating method. 

should be mentioned that this specimen is embedded in an infinite bimaterial medium, so that 
analytical solutions can be used to describe the stresses near the crack tip. In Fig. 4(d), tractions 
are applied on the surface of the specimen so that the tractions generated in the problem depicted 
in Fig. 4(c) may be cancelled to make the outer surfaces traction-free. It is interesting to note that 
the problem represented by Fig. 4(d) is very similar to the problem we started with [Fig. 4(a)], but 
for the loads acting on the surface of the specimen. In general, the loads in Fig. 4(d) will be much 
smaller than those in Fig. 4(a) and these small loads will be referred to as "residual loads". The 
superposition procedure can now be applied to the loading in Fig. 4(d) to obtain the next set of 
residual loads. The iteration procedure is continued until the residual loads become negligibly small 
in some sense. The sum of crack surface pressures from the infinite medium problem [Fig. 4(c)] 
are then used to compute the stress intensity factor using the formulation derived by Cook and 
Erdogan [9]. 

The finite element method (FEM) is used to solve the problem depicted in Fig. 4(b). Due to 
the simple geometry of the problem, four-node plane rectangular elements can be used. Further, 
since there is no crack in the model, there is no need for fine meshing at the crack tip. A uniformly 
coarse mesh is used throughout the model. In the following sections, the boundary element method 
(BEM), a method for computing the stress intensity factor for a crack in an infinite bimaterial 
medium, and the steps involved in the alternating method, are briefly described. 

3.1. Boundary element method 

One of the tools used in the development of the present numerical method is a BEM due to 
Crouch [5]. This method consists of placing N displacement discontinuities of unknown magnitudes 
along the boundaries of the region to be analyzed (crack surfaces in the present case), then setting 
up and solving a system of algebraic equations to obtain the discontinuity values that produce 
prescribed boundary tractions. One may define a displacement discontinuity as a line crack whose 
opposing faces have been displaced relative to one another by a constant amount. Displacement 
discontinuities may also be thought of as a continuous distribution of dislocations. A constant 
displacement discontinuity may be formed by placing a pair of equal and opposite edge dislocations 
at the two ends of a line segment. 
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Fig. 5. Displacement discontinuity in an infinite bimaterial medium. 

With reference to Fig. 5, we may define the displacement discontinuity di as the difference in 
displacements between the two sides of the line segment as follows: 

d e = u ~ ( £ , O ÷ ) - u ~ ( £ , O - ) ,  - a  < £  < a  (3) 

d p = u ; ( £ , O ÷ ) - u ~ ( £ , O  ), - a  < £  < a  (4) 

where u~ and u; are displacements in the £ and fi directions respectively. 
Analytical expressions for stresses and displacements at any arbitrary point (x, y) in the infinite 

bimaterial solid can be derived in terms of d~ and d~, the length 2a over which the discontinuity 
exists, and the location and orientation of the discontinuity specified by (x,,  y,.) and ~ [5]. For 
example 

axx (x, y) = axx(X, y, xc, y,, a, ct, de, at;,) (5) 

ux(x, y )  = ux(x, y, xc, y,., a, o~, de, d;). (6) 

Similar expressions may be derived for a~.y, z~, and uy also. 
A knowledge of the stresses and displacements at any point in the bimaterial medium can be 

used indirectly to solve the problem of a crack subjected to a known pressure or crack surface 
traction distributions. 

Now let us consider the actual problem of a pressurized crack in an infinite bimaterial medium. 
It is required to find the crack surface displacements, and also the displacement and stress fields 
in the medium. The crack is divided into N segments. The crack surface displacement distribution 
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Fig. 6. A semi-infinite crack in an infinite bimaterial medium. 
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is assumed to be such that the displacement discontinuity is constant over each segment. The 
stresses and hence the tractions at the midpoint of  each segment are expressed as a linear function 
of the unknown displacement discontinuities using eq. (5) and two other similar equations for %y 
and Zxy. The unknown discontinuities are solved from the condition that the tractions on the crack 
surfaces should be equal to the applied pressures. Once the displacement discontinuities are known, 
the stresses and displacements at any arbitrary point can be calculated using eqs (5) and (6). An 
example of such a problem for the case of  a crack not touching the interface is given in Crouch 
and Starfield [10]. For  the case of  a crack touching the interface, the procedures are similar except 
that the distance between the crack tip and the interface is taken as a very small fraction of the 
actual crack length, say, 10-3a, in order to avoid numerical difficulties. 

3.2. Evaluat ion o f  the stress intensity f ac tor  

Cook and Erdogan [9] have provided the analytical solution to the problem of a semi-infinite 
perpendicular crack terminating at a bimaterial interface, using a conjunction of Mellin transforms 
and dislocation theory to derive the integral equations. Referring to Fig. 6, Material 1 contains 
a semi-infinite crack along 0 = rr which is subjected to a pair of concentrated wedge forces P at 
r = r0. The strength of  the stress singularity at the crack tip for a given stress component may be 
expressed as: 

Qij(O) = l imr~0x/ /~r  I ~aij(r, 0). (7) 

The parameter 2 may be solved from the characteristic equation: 

2a cos 7r2, - (f12 2 + 7) = 0 (8) 

where 

m =  (#2/~,) 

ct = ( m  + x2)(1 + x l )  

fl = --4(m + x2)(1 - -m)  (9) 

7 = (1 - m ) ( m  + x2) + (1 + mxl)(m + x 2 ) -  m(1 + xl)(1 +mx2).  

In the above equation, /~'s are the shear moduli, x 's  are the Muskhelishvili constants, and the 
subscripts refer to Materials 1 or 2. 

For  the present problem we define the stress intensity factor Q0 due to a pair of  wedge forces 
P at r = r 0 as 

Q0 = lim, ~ o x~ ~ r  i - ~'a2oo (r, 0). (1 O) 

The explicit expression for Q0 is given in Cook and Erdogan [10] as 

Oo = C ~ / ~ P r o  ;~ ( l l )  

where the factor C is given by 

C = m(1 + ~c,)[(1 - 22)(m + x2) + (1 + 22,)(1 + rmq )] (12) 
[2ha sin n2, + 2fl2,] 

The relevance of the results in eqs (10) and (11) for our problem is explained below. As mentioned 
earlier the singularities are contained in the infinite domain problem [Fig. 4(c)], and we use the BEM 
to solve this problem. Theoretically it should be possible to evaluate the stress intensity factor either 
from the crack surface opening displacements behind the crack tip or the stresses tryy ahead of  the 
crack tip. However, our experience shows that the singularity in the present case is limited to a 
very small distance ahead of  the crack tip, and a very large number of crack discretizations are 
needed to capture the singularities. Similar observations were made by Ahmad [7] also. Further, 
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Fig. 7. Geometry for a finite crack touching a bimaterial interface. 

this is compounded by the fact that we are assuming a constant displacement discontinuity over 
each crack segment. Nevertheless, the solutions for stresses and displacements away from the crack 
tip were found to be good. This is the nature of the solution we would like to exploit in evaluating 
the stress intensity factor using eqs (10) and (11). 

The procedure for computing the stress intensity factor is as follows. The crack surface 
pressures are obtained from the converged solution of the alternating method (see Section 3.3). 
Using the BEM one can then solve for the corresponding displacement discontinuities. The stress 
component ayy is found along the line segment (0 = r~, 2a < r < oo) (Fig. 7). The stress intensity 
factor for the crack tip at the interface can be computed using Q0 in eq. (11) as the Green's function: 

Q,=Cv/~If~ap(r)r-;'dr-f2~a,.y(r)r-;~dr 1. (13) 

Here, p(r) are the crack surface pressures, ayy(r) are the tractions ahead of  the remote crack tip 
and the factor C is defined in eq. (12). Since p(r) is constant over each crack segment, the first 
term on the right-hand side of eq. (13) can be evaluated in closed form. The second term may be 
integrated using either a Riemann summation or an appropriate quadrature scheme. Although the 
second integral in eq. (13) extends to infinity, in numerical integration a finite value of the upper 
limit was used. 

3.3. The alternating method 
The alternating method uses a combination of FEM and BEM. The FEM is used to solve for 

the stresses in an uncracked finite body, and the BEM to provide the solution to a pressurized crack 
in an infinite bimaterial body. The alternating method manages to overcome some of the technical 
barriers discussed earlier. For example, the extremely fine order of meshing required at the crack 
tip has been eliminated. This has been made possible because the problem has been split up into 
two major components. The first is the modeling of  the uncracked body using FEM and the second 
is the modeling of the cracked regime using BEM. Due to the superposition scheme discussed 
below, we can use relatively coarse meshing for the FE model and slightly finer meshing for the 
BE model. The steps involved in the execution of the alternating methods are as follows: 

(1) Solve the problem of  the uncracked body under the given external loads by using FEM. 
The pressures that would act on the crack surfaces are computed in this step. 

(2) Since the crack surfaces are stress-free, the crack surface pressures computed in Step 1 have 
to be reversed, and applied to the same finite body. However, since we do not have analytical 
expressions for a finite-crack body, the reversed crack surface pressures are applied on the crack 
in an infinite bimaterial medium. The BEM explained earlier is used to find the tractions and 
displacements on surfaces which correspond to the actual surfaces of the specimen. 



296 S. L A H I R I  et al. 

(3) Since the external surfaces of the body are stress-free (we have taken into account the 
applied loads in Step 1), the tractions computed in Step 2 have to be reversed and applied to the 
surfaces of the finite body. We can use the FE model to solve this problem. Now, one may observe 
that we have reverted back to a problem which is similar to the initial problem except for the 
external loads acting on the body. As mentioned in Section 3, we will refer to these loads as 
"residual loads". 

(4) Step 1 is repeated with the residual loads acting as external loads. 

The residual loads will reduce after each cycle of the iteration. The convergence is checked by 
comparing similar quantities for two successive iterations. This, for example, can be the norm of 
the vector of crack surface pressures computed at the end of Step 1. The stresses and displacements 
for the given problem are obtained by superposing the corresponding results from all the steps used. 
However, for evaluating the stress singularity we need only the crack surface pressures acting in 
the infinite medium derived from the results of Step 1. 

In the above description we assumed that only tractions are prescribed on the surface of the 
body. If displacements are prescribed, then the corresponding residual displacements have to be 
computed in Step 3. 

The actual implementation of the alternating method is as follows. The finite element 
equations can be cast in the form: 

[K]{q} = {R} -[Kp]{ qp} (14) 

where 

[K] = global stiffness matrix 
{ q} = unknown displacements 
{R} = applied forces 
[Kp] = elements of stiffness matrix associated with prescribed displacements 

{ qp } ----- prescribed displacements. 

The crack surface pressures {p} can be computed from the displacements { q} as 

- { p }  = [S]{q}. (15) 

Since a negative sign is used with {p} in eq. (15), the crack surface pressures in the BEM will then 
be {p} with a positive sign. The BEM solves for the displacement discontinuities {d} from {p}: 

[A]{d} = {p} (16) 

in which [A] is computed using eq. (5). Once {d} is found, the tractions and displacements needed 
in Step 3 can be computed using eqs (5) and (6) as 

{t} = [B]{d} (17) 

{u} = [C]{d} (18) 

where { } = stresses due to {p } at finite number of points on the imaginary surface corresponding 
to the boundary of the problem; 

{t} = tractions due to {p } at finite number of points on the imaginary surface corresponding 
to the boundary of the specimen = { }In]; 

{u} = displacements due to {p} at finite number of points on the imaginary surface referred 
to above [n] = direction cosines normal to the boundary segment under consideration. 

The sizes of the [A], [B] and [C] matrices are as follows: 

[A] = (NMUL) x (NMUL) 
[B] = (3 x NLOCS) x (NMUL) 
[C] = (2 x NLOCD) x (NMUL) 



Evaluation of bimaterial stress intensity factors 

Table I. Comparison of normalized stress intensity factors Qt for a crack in an infinite bimaterial 
medium 

297 

P = - - P o  P = - - P o  P = - - P o P  P = - - P o P  P = - - P o P  2 P = - - P o P  2 

~2/~, ~ (Qo~) (Qn~,) (Q .. . .  ) (Q . . . .  ) (Q . . . .  ) (a  . . . . .  ) 
23.08 0.6619 2.7845 2.8829 - 1.6867 - 1.6268 1.6660 1.7078 

0.043 0.1752 0.0700 0.0673 -0 .0303  -0 .0317  0.0314 0.0285 

Po 

7 _  

IP 
Im 

2w ~ Po 

I " 
P 
P 

Fig. 8. Center crack in a finite width plate. 

w h e r e  

NSEG = number of crack discretizations in the BE model; 
NMUL = 2 x NSEG; 
NLOCS = number of prescribed traction location points; 

NLOCD = number of prescribed displacement location points; 

The matrices [K], [Kp], IS], [A ], [B] and [C] were first computed for the given model and stored 
in memory. To start the cycle, the applied loads {R } and prescribed displacements { qp } are used 
in eq. (14) to solve for {q}, then {t} and {u} are computed using eqs (15)-(18). The second cycle 
starts with - { t }  as the applied load ({R}) and - { u }  as the prescribed displacements, {qp }. The 
convergence is checked by comparing II {p} II between two consecutive cycles. 

4. RESULTS AND DISCUSSION 

Examples have been chosen such that the various numerical tools used in this paper may be 
verified by comparison with known results. The combination of the BEM (Section 3.1) and the 
procedure for evaluating the stress intensity factor, Q (Section 3.2) was verified by comparing with 
the closed form solutions for a finite crack in an infinite bimaterial medium [9]. The problem 
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IP 

r _  
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Fig. 9. Symmetric edge cracks in a finite width plate. 

Table 2. Comparison of normalized stress intensity factors 
for finite sized isotropic specimens 

gnumer  
Plate problem Kcxact (alt. meth.) 

(1) One centrally 2.7576 2.8100 
located crack 

(2) Two symmetric 2.8617 2.8812 
edge cracks 
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Fig. 10. A cracked bimaterial beam under uniaxial tension. 

considered was that of a crack of length 2a residing in Material 1 (Fig. 7). One of the crack tips 
terminated at the bimaterial interface. Three types of crack surface pressures were considered: (a) 
constant pressure p = -P0; (b) linearly varying pressure given by p = - P O P ;  and (c) quadratic 
variation of pressure given by p = - p o p  2, where p = (r - a ) /a .  The numerical values of p0 and a 
were 1 psi and 1 in., respectively. The results for the stress intensity factor, Q~, obtained from the 
present numerical method are compared with the exact solution in Table 1. It may be noted that 
the present numerical method is in good agreement with the closed form solutions of Cook and 
Erdogan [9]. In Table 1, #'s are the shear moduli of the respective materials, 2 is the bimaterial 
parameter given by eq. (8), Qoxact refers to the results of Cook and Erdogan [9] and Q . . . . .  are the 
results obtained using the present method. 

Next, we evaluated the present scheme of the alternating method by considering a homo- 
geneous, isotropic, finite-size cracked specimen. In the first example, we considered a plate with 
a center crack subjected to uniaxial stresses perpendicular to the crack (Fig. 8). In the second 
example, the center crack was replaced by two edge cracks (Fig. 9). The stress intensity factors were 
normalized with respect to a 0 ~ .  The normalized stress intensity factors for both cases are 
compared with the exact solution in Table 2. It may be seen that the agreement is quite good. The 
exact solutions to these two problems can be found in Hellan [11]. 

Having verified that the proposed methodologies work for infinite bimaterial media as well 
as for finite isotropic specimens, we proceeded to demonstrate the usefulness of the method by 
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Fig. 11. Plot of  normalized Ql vs normalized thickness t~. 
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Fig. 12. Plot of normalized Q~ vs normalized thickness t 2 . 

computing the stress intensity factor, Q~, in finite-size cracked bimaterial specimens. The specimen 
considered is depicted in Fig. 10. The materials and dimensions are typical of laboratory specimens 
that can be used to measure the critical stress intensity factor, Qcr. 

The specimens shown in Figs 11-14 are all of the same length, subjected to the same uniaxial 
tension, tr 0 = 6894.7573 Pa (1 psi), whereas the volume fractions of the two materials have been 
varied in order to compute the different values of Q~. In the first case, the crack length has been 
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Fig. 13. Log-log plot of normalized Qt vs normalized thickness t~. 
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Fig. 14. Log-log plot of normalized Ql vs normalized thickness t 2. 

varied, keeping the thickness o f  the a luminum layer constant ,  and in the second case, the thickness 
o f  the a luminum layer has been varied keeping the crack length constant .  

In  the first case, the half-thickness o f  the a luminum layer has been set at 5.08 mm (0.2 in.) while 
the crack length, and in turn, the thickness o f  each epoxy layer has been varied f rom 2.54 m m  
(0.1 in.) to 20.32 m m  (0.8 in.) for the five different examples analyzed. The total thicknesses have 
been varied f rom 15.24 m m  (0.6 in.) to 50.8 m m  (2.0 in.) while the thickness ratios have been varied 
f rom 0.25 to 2.0, respectively. In the second case, the thickness o f  each epoxy layer, and in turn, 
the crack length has been set to 5.08 m m  (0.2 in.) while the half-thickness of  the a luminum layer 
has been varied f rom 1 .27mm (0.05 in.) to 10 .16mm (0.4in.) for the five different examples 
analyzed. The total thicknesses have been varied f rom 12.7 m m  (0.5 in.) to 30.48 m m  (1.2 in.) while 
the thickness ratios have been varied from 0.25 to 2.0, respectively. The ratio o f  the shear moduli  
is lt2/l~ ~ = 23.08. Table 3 tabulates Q~ values for Case 1, and Table 4 tabulates the same for Case 2. 

It should be noted that  in all examples the crack length is equal to the thickness o f  the epoxy 
layer. The normalizat ion was carried out  with respect to the material properties o f  the stiffer layer, 

Table 3. Stress intensity factors for a cracked bimaterial tension specimen in 
which the crack length has been varied while the stiffer layer thickness has been 

kept constant 

Crack length (m) Overall thickness (m) t2/fi QI (Pa'ml-~) 

0.00254 0.01524 2 . 0 0  691.3245 
0.00508 0.02032 1.00 1013.8378 
0.01016 0.03048 0 .50  1575.9730 
0.01524 0.04064 0 .33  2078.0696 
0.02032 0.05080 0 .25  2533.9837 

Table 4. Stress intensity factor for a cracked bimaterial tension specimen in which 
the crack length has been kept constant while the stiffer layer thickness has been 

varied 

Crack length (m) Overall thickness (m) t2/tl QI (Pa. m ~-~) 

0.00508 0.03048 2 . 0 0  789.4915 
0.00508 0.02032 1.00 1013.8378 
0.00508 0.01524 0 .50  1418.3876 
0.00508 0.01355 0 .33  1774.4072 
0.00508 0.01270 0 .25 2085.9306 
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viz. the aluminum layer. The normalized Qh was defined as 

t~ -t- t2 

Qh = 0h (19) 
t~ + t 2 

This was an arbitrary choice since, at this point of  time, the exact functional relationships between 
the various parameters and Qh have not yet been experimentally established. 

The plots of  normalized Qh are displayed in Figs 11-14. The plots also display linearities when 
normalized Qh values are plotted against normalized thickness ratios. The correlation coefficients 
for the two regular plots are 0.9921 and 0.9699 for Cases l and 2, respectively. The correlation 
coefficients for the log-log plots for Cases 1 and 2 are 0.9992 and 0.9948, respectively. A correlation 
coefficient of 1 indicates an exactly linear relationship. Hence, these values indicate that the log-log 
plots are more linear in nature than the regular plots and should be the ones to dictate the linear 
propensities. The key factor to be determined in these plots are the slopes of the lines, which may 
have an important bearing upon the relationship between Qh and the relevant geometric parameters 
for finite-size cracked bimaterial bodies. This relationship, when concluded, will lead to important 
approximations for the critical loads at which the cracks start initiating. 

One of the aims of this study, as mentioned above, is to find empirical relations between QI 
and various crack parameters similar to the ones found in fracture handbooks where the stress 
intensity factors for various specimen geometries and loading conditions are listed in terms of 
normalized loads and crack lengths for isotropic homogeneous materials. This kind of study has 
not been carried out for finite-sized cracked bimaterial specimens prior to this. If such empirical 
formulas can be established for different crack geometries and loading conditions, it would be an 
invaluable help for engineers and scientists. It would enable us to select appropriate specimen 
dimensions for testing purposes and also provide an estimate of failure loads according to our 
proposed hypothesis. 

5. CONCLUSIONS 

A finite element-boundary element alternating method has been developed for analyzing a 
cracked bimaterial test specimen. The crack is perpendicular to, and terminates at, the bimaterial 
interface. The FEM is used to model the specimen without the crack. The BEM (displacement 
discontinuity method) is used to find the stresses in the infinite bimaterial medium due to crack 
surface tractions. The stress intensity factor for the crack tip touching the interface is extracted by 
using a closed form solution for a semi-infinite crack opened by a pair of wedge forces. The method 
has been verified by applying it to several infinite domain bimaterial crack problems and finite-sized 
homogeneous medium problems for which exact solutions are available. The method was then 
applied to a bimaterial cracked test specimen. The stress intensity factors were computed for 
various crack lengths and specimen widths. Future work will be concerned with testing bimaterial 
specimens for measuring the critical value of the load at which crack propagation occurs and 
evaluating the critical stress intensity factor with this value to see if it can be used as a failure 
criterion. A series of parametric numerical analyses have been carried out to see whether empirical 
relationships may be established between Q~ and the various specimen geometries and loads, such 
that a listing of  such empirical formulas may be made for finite-size cracked bimaterial specimens. 
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