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ABSTRACT: A micromechanical analysis of the unit cell of a unidirectional composite is
performed using the finite element method. The circular fibers are assumed to be packed in
a periodic square array. Assuming that the failure criteria for the fiber and matrix materials
and also for the fiber-matrix interface are known, the failure envelope of the composite is
developed using the microstresses computed in the unit cell analysis. This method is re-
ferred to as the Direct Micromechanics Method (DMM). The micromechanical methods
were also used to simulate different tests to determine the strength coefficients in phenome-
nological failure criteria such as maximum stress, maximum strain and Tsai-Wu theories.
The failure envelopes from the phenomenological failure criteria are compared with those
of the DMM for the cases of biaxial and off-axis loading of a model unidirectional compos-
ite material. It is found that none of the phenomenological criteria compare well with the
DMM in the entire range. A conservative failure envelope obtained using a combination of
maximum stress and Tsai-Wu criteria seems to be the best choice for predicting the failure
of unidirectional fiber composites.

KEY WORDS: direct micromechanics method, failure criteria, failure envelopes, micro-
mechanics, off-axis test, periodic boundary conditions, unit-cell analysis, unidirectional fi-
ber composites.
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INTRODUCTION

ICROMECHANICAL METHODS HAVE been used in analyzing fiber composite

for more than 30 years. With the ever increasing computing capabilities,
more and more detailed micromechanical analyses are being performed. How-
ever, most often micromechanics is used for predicting thermo-elastic constants
and other transport properties such as thermal conductivity [1-7]. Dvorak et al. [8]
used micromechanics for predicting the yield surface of several metal matrix com-
posites. Lin et al. [9] performed finite element micromechanical analysis of bo-
ron/epoxy and boron/aluminum composites to determine the elastic-plastic be-
havior under uniaxial loading. Ishikawa [10] used analytical micromechanics to
study the effects of thermal residual stresses on the strength. Adams [11] used mi-
cromechanical methods to predict the nonlinear temperature dependent stress-
strain behavior. Recently Whitcomb and Srirengan [12] used three-dimensional
finite element micromechanical analysis to predict the progressive failure of a
plain weave textile composite under in-plane extension.

Although micromechanical models have been successfully employed in pre-
dicting thermo-elastic constants of fiber reinforced composite material, their use
for strength prediction under multiaxial loading conditions is not practical. Hence
phenomenological failure criteria are still the popular choice in the industry. The
various strength coefficients in the phenomenological criteria are measured by
testing unidirectional composites under different combinations of loads until fail-
ure. There are three major types of engineering failure criteria for unidirectional fi-
ber composites: (a) maximum stress criterion; (b) maximum strain criterion; and
(c) quadratic interaction criteria. Tsai-Hill and Tsai-Wu are the two major quad-
ratic failure criteria. Although these failure criteria are widely used, there is no
mechanistic explanation why these criteria should work or what their limitations
are. For example the form of the Tsai-Hill failure criterion is based on Hill’s yield
criterion for anisotropic materials undergoing plastic deformation [13].

In this paper we perform a finite element based micromechanical failure analy-
sis on the unit cell of a unidirectional fiber composite. The micromechanical
analysis computes the microstress field within the unit cell for a given homogene-
ous macrostress state acting on the composite. We assume that the failure criteria
for the fiber and matrix materials, and also for the fiber-matrix interface are
known. Then from the microstress field we can determine if the composite will fail
under a given set of macrostresses. In this paper this procedure is referred to as the
Direct Micromechanics Method (DMM). Thus DMM can be used to draw failure
envelopes in various stress spaces such as biaxial state of stress (o, and o7)** with
or without inplane shear stress 7,7. The DMM can also be used to determine the
off-axis strength of a unidirectional composite at various loading directions. Since
the DMM can be thought of as numerical simulation of various strength tests on a
composite, they can also be used to determine the strength coefficients in the

**g, and grare the longitudinal and transverse normal stresses, respectively. 7; 7is the shear stressin the LT plane.
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aforementioned phenomenological failure criteria. The strength coefficients can
then be used to draw the failure envelopes for respective phenomenological crite-
ria. In this paper the DMM failure envelopes are compared with the phenomenol-
ogical models, and based on the results the applicability and limitations of each
criterion are discussed.

DIRECT MICROMECHANICS METHOD
Unit Cell Analysis

The micromechanical analysis of a unidirectional fiber composite is performed
by analyzing the unit cell of the composite using the finite element method. In the
present study, we assume that uniform macrostress exists through the composite.
It is assumed that the fibers are circular in cross section packed in a square array.
Thus the unit cell or the representative volume element is a square. The unit cell
shown is in Figure 1. The unit cell analysis assumes that the composite is under a
uniform state of strain at the macroscopic scale which are called the macroscale
strains or macrostrains, and the corresponding stresses are called macrostresses.
However the actual stresses in the fiber and the matrix within the unit cell will have
spatial variation. These stresses are called microstresses. The macrostresses are
average stresses required to create a given state of macro-deformations, and they
can be computed from the microstresses obtained from the finite element analysis.
The macrostresses and macrostrains are related by the elastic constants of the ho-
mogenized composite [C]:

o'}y = [Cl{e™} (1
X,
/Fiber
X,
p, \
X \
Matrix

Figure 1. Unit cell coordinate system.
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If the composite is subjected to a macroscopically homogeneous deformation
then all unit cells will have identical microstress and microstrain fields. Continuity
of stresses across a unit cell then requires that traction be equal and opposite at the
corresponding points on opposite face of the unit cell (periodic boundary condi-
tion). Since the displacement gradients are constant for a homogeneous deforma-
tion, the displacements at corresponding points on opposite faces of the unit cell
differ only by a constant. A macroscopically homogeneous deformation can be ex-
pressed by the boundary displacements:

u = Hyx, (i=13)=12) @

where Hj; are the displacement gradients. Then the periodic displacement condi-
tions on the faces x; = 0 and x; = L are

ui(L)xz)— ui(07x2)= HilL

3)
u; (x,L)— u,(x,,0)= H,,L
The traction boundary condition on the faces x; = 0 and x; = L are:
T.(L,x,)=-T;(0,x,) 4

T,(x,L) = =T, (x,,0)

The above boundary conditions can be ensured by using multi-point constraint
elements in the finite element model.

In the DMM the unit cell is subjected to six linearly independent macroscopic
deformations. In each deformation case one of the six macrostrains are assumed to
be nonzero and the rest of the macrostrains are set equal to zero. The six cases are:
gaszlzsflf= 1;Case2: X =1;Case 3: ¢4 = 1;Case 4:y 7 = 1; Case 5:y 31 = 1; Case

Ya = b

For cases 1 through 4, eight-node isoparametric generalized plane strain ele-
ments and multi-point constraint elements were used [14]; for cases 5 and 6,
eight-node plane elements capable of out of plane deformation were used. The
derivation of stiffness matrix of the out of plane shear element is given in the Ap-
pendix. FE analysis was used to compute the microstresses in each element and
also at the fiber matrix interface for each case of deformation given in Table 1. The
macrostresses corresponding to each case can be computed by averaging the mi-
crostresses over the entire area of the unit cell:

1 1 <
oM=— VY 0,dd=— o.dA, 5
Y4 .[1 Y A ; 4 ©)

where A is area of the unit cell, 4; is the area of the ith element, and » is the number
of elements.
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Table 1. Periodic boundary conditions for the FE model of the unit cell.

Constraints between

Constraints between

Case Left and Right Faces  Top and Bottom Faces Out of Plane Strains
€ = 1 uy (L,Xz)—u1(o,X2) =L Ui(x1,L)—Ui(X1,0) =0 £33 = 0, Y31 = 0, Y23 = 0
Uz(L,XQ)—Uz(O,Xz) =0 i= 1,2
g0 =1 (L, xz)—ui0xz) = 0 uyixy,L)—uy(x1,0) = 0 €33 = 0,731 = 0,723 =0
ji= 1,2 U2(X1 ,L)—UQ(X1,0) =L
£33 =1 Uil xp)—u;i(0xp) = 0 ui{xy,L)—u;(x,,0) = 0 €33 = 1,731 =0,723=0
i=1.2 i=12
7i2=1  ullxg)—uy(0x) =0 uiXy,L)—u;(x4,0) = 0 £33 = 0,731 = 0,723=0
Us(L,xp)—up(0.x5) = L i=12
voa =1 ugll,xp)—us(0x;) =0 tgxy,L)—us(x1,0) = L €3 =0,73 =0
ysr =1 ug(lxp)—uz(0xp) =L Us(xy,L)—uz(x4,0) = 0 €33 =0,7,3=0

Evaluation of Elastic Constants

The DMM requires the evaluation of elastic constants to determine the mac-
rostrains for a given state of macrostress. Further the computed elastic constants
can be compared to the available analytical results as a verification of the FE
mode. In implementing the procedure for obtaining the elastic constants of the
composite, first, we choose that only one macroscopic strain (say, sf{ = 1) exists
and the others are zero. The corresponding macrostresses can be computed by the
method mentioned above. Substituting the value of the macrostrain and mac-
rostresses in Equation (1), the stiffness coefficients in a column corresponding to
the non-zero strain can be evaluated. The same procedure can be repeated for the
other strain components to obtain all the stiffness coefficients. Once the [C] matrix
is determined, the elastic constants can be obtained from the [S] matrix which is
the inverse of [C]. It can be shown that the [C] obtained from the micromechanics
will always be symmetric [15]. In the unit cell analysis care should be taken in dis-
cretizing the unit cell such that opposite faces of the unit cell have identical nodes
so that periodic boundary conditions can be implemented using multi-point con-
straints.

Micromechanics of Failure

In the micromechanical failure analysis we are concerned with the failure of the
fiber, matrix or the interface for a given macroscopic stress state. The failure can
be predicted by checking each finite element in the unit cell model. Thus for a
given state of macrostresses we need information on microstresses in each ele-
ment. First the macrostrains for a given macrostress state can be found from con-
stitutive relation (Equation 1) of the composite as:

"y =1C"10") 6



Evaluation of Failure Criteria for Fiber Composites 771

From unit cell analysis we have already found the microstresses in each finite
element for each of the six linearly independent macrostrain component. Thus the
microstresses for a given macrostress state can be obtained by superposition. This
can be expressed as

©©)=[FO1EM )

where {0} is the microstress in Element e, and the matrix [F*] contains the mi-
crostresses in Element e for various states of unit macrostrains. For example, the
first column Fy contains the six microstresses in Element e for a unit macrostrain
). In using Equations (6) and (7) we have tacitly assumed that there are no ther-
mal residual stresses in the material. In the present study the microstresses were
computed at the central integration point of each element and also at the midpoints
of the edges that are common to fiber and matrix elements. We assume that failure
criteria for the matrix, fiber or interface materials are known. It is also assumed
that the composite has failed even if only one of the fiber or matrix element fails or
if fiber-matrix interface fails in one of the elements. Although this assumption is
very restrictive, it can be considered to represent the initial failure of the compos-
ite, and it is consistently applied to both the DMM and in the development of phe-
nomenological criteria. Such point stress criteria for failure have been used before
by many researchers, e.g., Adams and Doner [16]. In the present study we have
used two types of failure criteria for the fiber and matrix: (1) maximum principal
stress criterion; and (2) von Mises yield criterion which is referred to as quadratic
criterion in this paper. For the interface we used the maximum tensile interface
stress and maximum interfacial shear stress criteria. Thus we can generate failure
envelopes for the composite in various stress spaces. A flow chart that describes
the DMM is shown in Figure 2.

Determination of Strength Coefficients

Although the DMM seems to be straight forward, it is not convenient in the
routine design of composite structures. Hence it will be desirable to have fail-
ure criteria in terms of macroscopic stresses. For example Tsai-Wu, Maximum
Stress, and Maximum Strain criteria are phenomenological failure criteria that
are expressed in terms of the macrostresses. Typically these criteria have some
constants in the equation which can be thought of strength parameters of the
composite. These parameters are usually determined by conducting various
tests on composite specimens. In the present study we propose a numerical
simulation of the same tests using the Direct Micromechanics Method to deter-
mine the strength parameters. The unit cell analysis is used to simulate various
tests that are conducted to measure the strength parameters. In principle we are
trying to curve-fit the DMM failure envelopes using the strength parameters or
strength coefficients. Let us take an example to show how to determine the
strength coefficients in Tsai-Wu failure criteria [17]. The form of Tsai-Wu cri-
terion in two dimensions is as follows:
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[Select the state of macrostress {c"} l

A
{ Compute macrostrains {e"} = [C]{c™} [

e=1

Compute microstresses in element e
{c") = [F®)e"}

rCheck element failure?

No Yes

e=e+1 No
Check next 4__{ If € = max J [ Composite fails J

element
Yes

y
] Composite does not faﬂ

Figure 2. Flow chart for direct micromechanics method.

2 2 2 —
Fl 00 + Fy,05 + Fot5, + 2F,0,05;, + Flo, + F05;, =1 ®)

Here o), is the transverse normal macrostress, gs; is the normal macrostress in
the direction of fiber and 73, is the in plane macro-shear stress. Fi1, F33, F'ss, Fi13, F)
and F3; are strength coefficients which need to be determined. In order to obtain the
strength coefficients F;, and F, we assume that only the macroscopic stress o, ex-
ists and other macroscopic stresses are zero in the composite. Then Equation (8)
takes the following form:

Fyol +Fo, =1 ©

First we assume that only macro-stress o, = 1, and apply micromechanics
analysis to obtain the microscopic stresses in each element of fiber and matrix.
Based on these information we can determine which element fails first, and the
maximum stress 01,7y for corresponding failure. Second we assume only macro-
stress o;; =—1 exists and repeat the above procedure to determine the compressive
strength o11¢cy. Then we can calculate F), and F; as follows:

1
Fp=—-——— (10)

I nrv9ucy
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o +0o
F = 17U 11CU an

OOy

Using similar procedures, we can evaluate the strength coefficients F3;, F; and
Fss. The expressions take the form:

1
F,=—-—— (12)
» O 33110 33cU

_Oypy T Oy

Fr=——--— (13)
} O 337v% 33cu
1
Fg = 72 (14)
31U

The procedure for finding F; is as follows. We assume that the macroscopic stress
731 is zero, and oy, and o33 are tensile and equal to unity. By applying the similar
procedure described above, we obtain the maximum macroscopic stress 01ima OF
O33max (O11max = O33mac) Which can cause failure. Thus the coefficient F); is deter-
mined from Equation 8 as:

1
F13=_2_-[1—(1:]]+F33)olzlmm—(Fl+F3)ollmax] 1s5)

11 max

RESULTS AND DISCUSSION

The unidirectional fiber composite was assumed to have circular fibers packed
in a square array. The dimensions of the unit cell were such that the fiber volume
fraction was equal to 63%. The fiber and matrix materials were assumed isotropic.
The Young’s modulus (E), Poisson’s ratio (v) and the tensile strength (.) of the fi-
ber (subscript /) and matrix materials (subscript m) were: E;= 130 GPa,v,=0.3, 0.,
=2.8 GPa, E,, = 3.5 GPa, v, = 0.35, and 0..» = 70 MPa. The properties we have as-
sumed are close to that of Kevlar/epoxy [18]. The fiber-matrix interface is as-
sumed to be perfect until failure occurred due to either normal tensile stresses or
shear stresses. The interface strengths were 30 MPa in tension and 28 MPa in
shear. The interface strengths are rough estimates based on the transverse tensile
and shear strength of Kevlar/epoxy composites. The composite was assumed to be
cured at room temperature and hence the thermal stresses due to fabrication were
ignored.

As explanation on the choice of the material properties is in order. The objective
of this research was to compare various phenomenological criteria with the DMM.
As such we could have assumed arbitrary properties for the fiber and matrix mate-
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rials. However, we were curious to compare the results with available experimen-
tal data, and hence chose Kevlar/epoxy as a candidate material.

The results for a unidirectional composite can be divided into four parts: (1) re-
sults for elastic constants; (2) results for strength properties; (3) failure envelope
for biaxial state of stress with or without inplane shear stress; and (4) off-axis ten-
sile strength. The results for elastic constants given in Table 2 provide a check for
our micromechanical analysis. In Table 2 the elastic constants are compared with
those obtained using Halpin-Tsai equations [18]. The agreement in elastic con-
stants is excellent.

We have used a three-letter notation to refer to various combinations of failure
criteria that have been used. The first letter refers to the failure criterion used for
the fiber and the second letter for the matrix material. In these notations Q and M
refer to quadratic (von Mises criterion) and maximum principal stress failure crite-
ria, respectively. The third letter, either Y or &, denotes if an interface failure crite-
rion was used or not. If the third letter is Y, then it means that the interface failure
was considered in the micromechanical analysis. For example, QMY means that
the quadratic failure criterion was used for fiber, maximum principal stress crite-
rion for matrix and the interface failure was considered. When the maximum prin-
cipal stress criterion was used, the constituent material (either the fiber or matrix)
was assumed to fail only in tension like some brittle materials.

The results for strength properties of the composite for various combinations of
constituent failure criteria are presented in Table 3. The longitudinal compressive
strength was not computed because it is believed that failure under longitudinal
compression is more an instability phenomenon rather than failure of constituent
materials, and the present analysis is not suitable for it. As the constituent proper-
ties we have chosen were close to those of Kevlar and epoxy, published strength
properties of Kevlar/epoxy composite [18,19] are also listed in Table 3.

From the results on Table 3 several observations can be made. The longitudinal
strength in tension does not depend on the particular failure criterion for fiber or
matrix materials or the interface conditions assumed here. The longitudinal
strength of 1.31 GPa seems to be much less than that will be predicted by some
simple models [18]. In the present case the ultimate tensile strain of fiber and ma-
trix materials are 0.0215 and 0.02, respectively. Thus the matrix controls the fail-
ure and the ultimate tensile strength of the composite is given by 0.02 £, = 1.68
GPa. However the simple rule of mixture type models do not account for the stress
concentration that will occur in the matrix locally due to constraining effects of the
fiber. Since the DMM is based on maximum stress at a single point (point stress
criterion), it is expected to give a very conservative result for strength values. In

Table 2. Elastic constants of the unidirectional composite.

Method E,(GPa) E; (GPa) Gy (GPa) vir

Numerical simulation 84.03 19.88 5.12 0.31
Halpin-Tsai Equation 83.08 18.09 517 0.32
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Table 3. DMM results for strength values and comparison

with published data.

Method oy (GPa) o7y (MPa) o'ry(MPa) T 7y (MPa)
QQN 1.31 69.25 69.25 22.63
QQy 1.31 16.30 60.47 15.47
QMN 1.31 37.44 203.36 39.19
Qmy 1.31 16.29 60.47 156.47
MQN 1.31 69.55 69.25 22.63
MQy 1.31 16.30 60.47 15.47
MMN 1.31 37.44 203.06 39.19
MMY 1.31 16.29 60.47 15.47
Reference [18] 1.40 12 53 34
Reference [19]- 1.40 10 50 30

fact the predicted longitudinal tensile strength (1.31 GPa) is somewhat closer to
the published strength of Kevlar/epoxy (1.40 GPa).

The transverse tensile strength o7y is very much affected by the interfacial
strength, and also by the type of failure criterion used for the matrix material.
When the interfacial failure was not considered (the cases ending with N, e.g.,
QQN, QMN etc.) a quadratic criterion for matrix gives higher strength and the
maximum stress criterion yields a lower strength. In the case of transverse com-
pressive strength o7, a slightly different trend is observed. The quadratic criterion
for matrix yields lower compressive strength where as maximum stress criterion
results in a higher value. The interface has the same effect as in the case of trans-
verse tensile strength in these cases. The effects of various failure criteria of the
constituents on shear strength (z.7y) is very similar to the transverse compressive
strength. It might be noted that for QMN and MMN cases, a very high transverse
compressive strength is predicted. This is because of the combination of maxi-
mum principal stress criterion (QMN) for the matrix—which does not consider
failure due to compression—and also the fact that the interface failure is not con-
sidered (QMN).

The micromechanics was applied to the case wherein the composite is subjected
to a state of biaxial stress with o, and o7 being the two nonzero stresses. The results
were plotted as failure envelopes in the (0;, o7) space. Sample envelopes for the
case QQN are shown in Figure 3. The results for all the cases are summarized in
Table 4. In Figure 3 we have presented the envelope obtained by DMM and also
the envelopes obtained by phenomenological criteria such as Tsai-Wu, maximum
stress and maximum strain criteria. From Figure 3 it can be seen that the maximum
strain criterion does not compare with the micromechanical results very well. In
fact this was true for all cases studied in this research. In all the eight cases neither
the Tsai-Wu nor the maximum stress criterion fit the direct micromechanics re-
sults in the entire space. Between the two criteria maximum stress criteria was bet-
ter in most cases. From Table 4 one can note that the failure criteria for the matrix
and also consideration of interface failure play a dominant role in the type of crite-
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Figure 3. Failure envelopes for QQN case (no in-plane shear stress).

ria for the composite. For example, if the matrix fails by maximum stress criterion
and if the interface failure is also considered, then the maximum stress theory is
good for the composite. However the combination of both Tsai-Wu and maximum
stress criteria was much better in all cases considered. A similar observation has
been made by Daniel and Ishai [20] based on some experimental results. They rec-
ommend the use of several failure criteria and determine the most conservative en-
velope in each quadrant.

The next case considered was again a biaxial state of stress with a constant in-
plane shear given by 7;7= 10 MPa. The results for this case are summarized in Ta-

Table 4. Comparison of various failure criteria for the case of biaxial
loading of the composite with 1 = 0.

Combination of Tsai-Wu Maximum

Case and Maximum Stress Criteria Tsai-Wu Criterion Stress Criterion
QQN Best Good Fair

QqQy Best Fair Good
QMN Best Poor Good
QMmy Best Poor Good
MQN Best Good Fair

MQy Best Fair Fair

MMN Best Poor Good

MMY Best Poor Good
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Table 5. Comparison of various failure criteria for the case of biaxial
loading of the composite with 1y = 10 MPa.

Combination of Tsai-Wu and Maximum

Case Maximum Stress Criteria Tsai-Wu Criterion Stress Criterion
QQN Excellent Excellent Fair

QaQy Excellent Good Fair

QMN Excellent Poor Good

QMY Excellent Poor Good

MQN Excellent Excellent Poor

MQy Excellent Good Poor

MMN Excellent Poor Good

MMY Good Poor Fair

ble 5, and sample failure envelopes for MMY case is given in Figure 4. Again the
results are very similar to the case without any inplane shear just discussed. In gen-
eral if the matrix failure is by quadratic criterion, then Tsai-Wu criterion is good
for the composite also. Again, the combination of Tsai-Wu and maximum stress
criteria is the safest for all cases.

The micromechanical analyses were used to simulate off-axis tensile tests for
various loading directions with respect to the fiber orientation. The off-axis
strength was computed by direct micromechanical analysis and also using the
Tsai-Wu and maximum stress criteria. The strength values given in Table 3 were
used in the Tsai-Wu and maximum stress criteria. Sample figures for QMN case
showing the variation of strength with fiber orientatin are given in Figures 5 and 6.
The results are summarized in Table 6. No one criterion compared well with the di-
rect micromechanics in the entire range of fiber orientation (0 <8 <90). From Ta-
ble 6, one can note that the Tsai-Wu criterion fits well for 0 <6 <30, the maximum
stress criterion is good for 60 <8 <90, and for 30 <6 <60 both criteria must be used

Table 6. Comparison of various failure criteria for simulated
off-axis tension tests.

Case 0<6<30 30<0 <60 60 <0 <90
QQN W W W
QaQy W TWNMS M.S
QMN W TWNMS M.S
QMmy ™W TWNMS M.S
MQN W W ™™W
MQy W TWNMS M.S
MMN W TWNMS M.S
MMY W TWNMS M.S

TW: Tsai-Wu criterion; M.S: Maximum stress criterion; W N M.S: Combination of Tsai-Wu criterion and
Maximum stress criterion.
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Normal stress in transverse direction (X, direction) (GPa)
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in most cases except for QQN and MQN. The quadratic criterion can be chosen for
both QQN and MQN cases.

CONCLUSIONS

From the above discussion we can reach the following conclusions:

1. The elastic constants obtained by direct micromechanics method match well
with those from the Halpin-Tsai equations.

2. According to the Direct Micromechanics Method the combination of Tsai-Wu
and maximum stress criteria offers a conservative failure envelope in the entire
space of biaxial state of stress.

3. The failure criteria for the matrix and also the interfacial condition play a domi-
nant role in the phenomenological failure criteria of the composite.

4. In off-axis tensile test simulations, no one criterion compared well with the di-
rect micromechanics in the entire range of fiber orientation (0 < 6 < 90). The
Tsai-Wu criterion fits well for 0 < < 30, and the maximum stress criterion is
good for 60 <6 <90. For 30 <8 <60 both criteria must be used and the lower of
the two should be considered as the composite off-axis strength.
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APPENDIX

In this section the stiffness matrix for the eight node out of plane shear element
is derived. The out of plane displacement u; can be interpolated as:

8
Us =2N:’(£I’§2)q3i (A1)
i=]
Where the shape functions are given by:

N, = _5(1_51)(1—52)(51 +&,+1) N;= %(1—512)(1—52)

Nz=%(1+§])(1-§2)(g,-52—1) N6=—;(1+§|)(1—§§)
N3=%(1+§1)(1+§2)(§l+§2—1) N7=%(1“§12)(1+§z)
N4=::‘(1—§|)(1+§2)(§2—§1_1) Ns‘_‘%(l—sl)(l_‘fi)

and g3; is the displacement of ith node in the x; direction.

The out of plane shear strains y,3, and ¥3; can be obtained in terms of the nodal
displacements as follows:

Y
{ ”}= [B)ig} (A3)
Yis
Where:
N, 9N, N,
_ | 9x,  dx ox,
[B]2x8 - BN] 3N2 (:)Ng (A4)
ox, 0x, ox,
{q}T = I_qsxqsz"'qnqssJ (A5)

It is also assumed that the fiber and matrix are isotropic and no coupling between
normal and shear deformation exists.

The strain energy density related to shear strains g»; and g3, can be expressed by
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T
1|72 } {7 23 }
Uy =3 [G] (A6)
° 2 {V 31 Y3
Where [G] is the matrix of shear moduli:

G, 0
[G]= [ 0 G ] (A7)

Then the strain energy in an element can be written as:

U, = fodeldx2 (A8)

The element stiffness matrix related to shear strains y2; and y3;, can be obtained
by using the principle of minimum potential energy, i.e., differentiating the strain
energy with respectto {g}. So the element stiffness matrix [K]. can be obtained as:

K.1= f f [BY [GI[Bldxdx, (A9)

[K.] can also be obtained by performing the integration in the natural coordinates

E;—Ez:

(K], = f (B [GUBIVIdE . (A10)

-1

Where |J | is the determinant of Jacobian matrix [21]. Now it is convenient to use

the Gauss quadrature and evaluate the above integral using numerical integration
[21]:

[K.1=Y D BT [GIBW, W, (A1)

m=1 r=1
where W,,, W, are weighing factors for the Gaussian point (& ;m,&2m).
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