Journal of Thermoplastic
Composite Materials

http://jtc.sagepub.com

Beam Finite Element for Analyzing Free Edge Delaminations
Marco A. Pinheiro and Bhavani V. Sankar
Journal of Thermoplastic Composite Materials 2000; 13; 272
DOI: 10.1177/089270570001300402

The online version of this article can be found at:
http://jtc.sagepub.com/cgi/content/abstract/13/4/272

Published by:
©SAGE

http://www.sagepublications.com

Additional services and information for Journal of Thermoplastic Composite Materials can be
found at:

Email Alerts: http://jtc.sagepub.com/cgi/alerts

Subscriptions: http://jtc.sagepub.com/subscriptions
Reprints: http://www.sagepub.com/journalsReprints.nav

Permissions: http://www.sagepub.co.uk/journalsPermissions.nav

Citations http://jtc.sagepub.com/cgi/content/refs/13/4/272

Downloaded from http://jtc.sagepub.com at UNIV OF FLORIDA Smathers Libraries on May 26, 2009


http://jtc.sagepub.com/cgi/alerts
http://jtc.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.co.uk/journalsPermissions.nav
http://jtc.sagepub.com/cgi/content/refs/13/4/272
http://jtc.sagepub.com

Beam Finite Element for
Analyzing Free Edge Delaminations

MARCO A. PINHEIRO! AND BHAVANI V. SANKAR?
Department of Aerospace Engineering,
Mechanics & Engineering Science
P.O. Box 116250
University of Florida
Gainesville, FL 32611-6250

ABSTRACT: A method is proposed to obtain the strain energy release rate and the
stresses ahead of the crack in a laminated composite plate due to free edge delamination un-
der Mode I type loading situations. A shear deformable beam finite element with nodes off-
setto either the top or bottom side has been developed. The thermal effects originating from
the curing process are included in the formulation of the problem. Two different methods
are used to calculate the strain energy release rate. The first method uses the J-integral eval-
uated around a zero-area path surrounding the cracktip and the strain energy release rate is
expressed in terms of the force and moment resultants in the elements surrounding the
crack-tip. The second method is similar to the virtual crack closure method, and the strain
energy release rate is expressed in terms of the forces transmitted by a rigid element placed
at the crack-tip and the displacements of the nodes behind the crack-tip. The stresses ahead
of the crack are obtained by using discrete spring elements in the uncracked portion of the
beam. The results calculated are in good agreement with results obtained from other studies
of the same problem. The advantage of the present method lies in its simplicity; in addition
it requires less computational effort than the methods that use solid elements.

INTRODUCTION

THE OCCURRENCE OF delamination in free edges has been receiving increasing
attention from investigators in their effort to understand and prevent
delaminations in composite structures. The reason is the presence of high
interlaminar stresses, especially peel stresses, in the neighborhood of a free bound-
ary. Often the free edge problem is modeled by a plate subjected to a uniform axial
strain (€,, = &) as shown in Figure 1. During the usual fabrication process, the
composite material is subjected to temperatures of several hundred degrees and
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Figure 1. The free edge problem.

then cooled down to room temperature. The change in temperature causes thermal
residual stresses, which may add to the severity of free edge stresses.

A simple procedure is developed in this study to obtain an approximate solution
for the peel stresses ahead of the crack tip and also to calculate the total strain en-
ergy release rate, G, for the case of free delaminations including thermal effects.
Since the present method uses the one-dimensional plate theory, it cannot separate
the contributions from different modes of fracture. The problem is modeled using
a shear deformable beam finite element with offset nodes (Sankar, 1991). Several
assumptions are made to simplify the problem so as to use beam finite elements.
First, the three-dimensional problem is approximated as a plane problem in the
yz-plane assuming that the stresses and strains do not vary along the x-direction.
This will be true for regions far removed from the points of load applications
(x=bin Figure 1). Thus, the problem has been reduced to two dimensions in the

z-plane. In fact, several authors have used such an approximation. Pipes and
Pagano (1970) modeled the free edge stress problem as a plane elasticity problem
and solved it using the finite difference method. In the present study, we further
simplify the problem as one dimensional by assuming that the plate is in a state of
plane stress parallel to the xy-plane (usual laminated plate theory assumption).
Thus, we consider the variation of displacements and rotation along the y-direc-
tion only, thereby reducing the problem to that of a one-dimensional plate (some-
times referred to as a beam), which can be solved using modified beam finite ele-
ments.

The delamination plane divides the laminate into two parts, the top sublaminate
and the bottom sublaminate (Figure 2), which are modeled using beam finite ele-
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ments with nodes offset to the bottom and top, respectively. It is assumed that the
delamination plane is the weakest one, and the crack propagation would occur
along this plane without crack branching. Two different models are used in the
present study. When the energy release rate is calculated, the top and bottom lami-
nates in the uncracked region of the beam have common nodes, except at the tip of
the crack, where arigid element is used to connect the top and bottom nodes (Fig-
ure 3). This rigid element not only ensures the continuity of displacements and ro-
tations at that section, but also brings in its formulation the generalized forces that
are transmitted between the sublaminates. These forces are used in the calculation
of G. For the purpose of computing the peel stresses ahead of the crack, the un-
cracked region of the beam is connected by spring elements (Figure 4), the stiff-
ness of which has to be judiciously selected.

In this study, the strain energy release rate G is obtained from two different
methods (Sankar and Pinheiro, 1990; Sankar, 1991). The first method uses the
J-integral evaluated around a zero-area path surrounding the crack tip, and the
strain energy release rate is expressed in terms of the force and moment resultants
in the elements surrounding the crack-tip. The second method is similar to the vir-
tual crack closure method, and the strain energy release rate is expressed in terms
of the forces transmitted by arigid element placed at the tip of the crack and the dis-
placements of the nodes behind the crack tip. The results from the two different
methods are found to be in good agreement with available results. The agreement
between the two methods itself is not surprising because they are interrelated
(Sankar, 1991).

€9

free edge
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&

top sublaminate

N
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Figure 2. Beam model of the free-edge problem.
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Figure 3. Finite element model for calculation of G.
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Figure 4. Finite element model for calculation of interlaminar normal stresses.
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ONE-DIMENSIONAL LAMINATED PLATE EQUATIONS

In this section, a laminated plate subjected to a uniform initial strain €,, = ¢,
(Figure 1) is analyzed. The thickness of the laminate is 24, and the width is 2b. Itis
assumed that 2/ is much smaller than 2L and that 2L is much smaller than 2b (Fig-
ures 1 and 2). We assume symmetry about the xz-plane and analyze only one half
of the laminate (right of the xz-plane). It should be noted that the individual layers
may not be symmetric with respect to the xz-plane. However, we are using the
plate theory, and hence it is sufficient that the kinematic variables in the plate the-
ory are symmetric. In the following, the reference xy-plane for the laminate is as-
sumed to be situated at either the top or bottom surface of the sublaminates. Thus,
the resultant moments and also the [A], [B] and [D] matrices refer not to the
midplane but to the reference plane which is offset from the middle plane. Hence,
we use the notation [a], [b] and [d] for the laminate stiffness to differentiate them
from the conventional laminate stiffness matrices. For example, the stiffness coef-
ficients of a laminate situated just above the xy-plane are given by the following:

h—
(a5by,dy) = [ 05(1,2,2)dz, (i) =1.2,6) o))

where 4 is the half-laminate thickness. The equations derived in the next section
refer to a laminated beam situated above the delamination plane. The expressions
for the laminated beam situated below the delamination plane differ only in the in-
tegration limits, —4 to O instead of O to A.

The problem is divided into two different phases. In the first phase, no external
load is applied to the laminate, which is subjected only to thermal stresses due to
the curing process. In the second phase, the cured specimen containing the edge
delaminating is subjected to the axial strain €, = ¢, in addition to the residual ther-
mal stresses.

Thermal Stresses

During the composite fabrication process, the laminate is cooled from a higher
temperature at which it is stress-free to room temperature. This causes residual
stresses in the composite plate. The thermal stress problem is a standard one, anal-
ysis of which can be found in any textbook on composites, e.g., Agarwal and
Broutman (1990). The derivation of laminate equilibrium equations in this study is
identical to the conventional procedure, except for the limits of integration in eval-
uating the force and moment resultants and the laminate stiffness coefficients, be-
cause the delaminating plane is used as the reference plane. The limits should be 0
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and 4 for a laminate above the reference plane, and —# and O for a laminate below
the reference plane. The fictitious thermal force and moment resultants are applied
as external forces in the finite element model to compute the displacements. The
details of the derivations can also be found in Pinheiro (1991).

Free Edge Problem
In analyzing the free edge problem, we assume that the laminate is subjected to

linearly varying displacements in the x-direction:

u(x,y,z) =egx (2)

such that

€ =€ (3)

The effect of this axial strain will be represented as equivalent forces and couple
acting on the beam as follows. The stress-strain relations for the kth layer are as
follows:

(O Qn le 0 €
ny = QIZ Q22 _O Eyy (4)

Tyz 0 0 Oy Yz

The axial force P, bending moment M, and shear force V acting on the top sub-
laminate are defined as

h
(P.M.V)= [ (0,,20,,,7,.)dz (5)

From Equations (4) and (5) and also using the laminate stiffness definition given in
Equation (1), the beam constitutive relations take the form

P an by 0 £
M|=1by ay 0 | %, =M, (6)

14 0 0 ay . 0
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278 MARCO A. PINHEIRO AND BHAVANI V. SANKAR
where ay, is the transverse shear stiffness defined as

g = ' ‘[Oh é44dz 7

The shear correction factor k? is taken as 5/6 in the present study. In Equation (6),
£3y, y(y’z and k, are the mid-plane axial strain, transverse shear strain, and curva-
ture, respectively, and P, and M, are the equivalent force and moment that
represent the effects of the applied strain e,. They are defined as

Py Mo) = =¢ [ O1a(1.2)de = —eq . i) ®

The thermal force and moment resultants discussed in the last section can also be
added to Equation (6) to obtain

P a4y by 0 e;’y 0 Pr
M\ =1by ap 0 | %, |-|M|-|M ©)
14 0 0 ayl{y 0 0

In the shorthand notation, Equation (9) can be written as
F=S¢-R (10)

where S is the laminate stiffness matrix, components of which are

ay by 0
S=|by ay 0 (11)
0 0 ay

and Ris the vector that represents the forces and moments induced by the applied
strain as well as the thermal effects:

R' =[P My O|+| P M, 0] (12)

In Equation (12) and also what follows, an underscore represents a matrix, and a
superscript T denotes matrix transpose. The vectors F and e are defined as fol-
lows:

F'=|p M V| (13)
€T=|_88y Kyy YSZJ (14)
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Finally, Equation (10) can also be expressed as
e=C(F+R) (15)

where C = §-! is the compliance matrix.

FINITE ELEMENT SOLUTION

The laminate with the free edge delaminating is modeled by two types of beam
finite elements. The top sublaminate, which is above the plane of delaminating, is
modeled using finite elements with nodes offset to the bottom side. The bottom
sublaminate is modeled by elements with nodes offset to the top. In the uncracked
region, the two sets of elements are connected by spring elements or share com-
mon nodes depending on the calculation performed. In the delaminated portion,
one can use gap elements, if necessary, to monitor the contact between
delaminated surfaces.

The finite element has two nodes and three degrees of freedom, namely, axial
displacement, rotation about the x-axis, and transverse displacement, (v, \, and w)
ateach node. The generalized nodal forces at the ith node are denoted by f;, m; and
f.i- In what follows, we describe a novel procedure to derive the element stiffness
matrix. The force and moment resultants (P, M and V) at the center of the element
can be approximated using linear interpolation as

P (fro = [u)I2
M |=| (my —m)/2 (16)
V) ((fa =12

It should be noted that the force and moment resultants and the generalized nodal
forces have different sign conventions, and that is the reason for the negative signs
in Equation (16). The nodal forces are vectors that follow the sign convention of
the coordinate axes, e.g., the force f; acting in the positive z-direction is positive,
whereas a positive z-force acting at the left end of the beam will create a negative
shear force resultant V. In expressing the force and moment resultants at the center
of the element in terms of the nodal values, we have used a linear variation of these
quantities along the length of the element. The average deformations at the center
of the element are expressed in terms of the nodal displacements as

0
€y (v, = v)la

€= Kyy = (WZ-WI)/Q arn
Ygz (¥, +W)/2+(w, —wy)la
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where a is the element length. In deriving Equation (17), we have assumed a first
order approximation for the derivatives. In other words, a linear variation of the
displacement variables is inherently assumed. Further, in deriving the last term in
Equation (17), we have used the definition of the shear strain

ow
YBZ—\V+_8_;

Now we require that the average force resultants and the deformations satisfy
the laminate constitutive relations given by Equation (16), which yields three
equations between the nodal forces and displacements. The remaining three equa-
tions are obtained from the fact that the nodal forces should satisfy static equilib-
rium. From the six equations, the relation between nodal forces and displacements
is obtained in the form

(18)

where £k is the element stiffness matrix, and f, ¢, and f _are the vectors of nodal
forces, nodal displacements, and residual forces, respectively:

J_J = Lfyl mo fa fro o om fz2J (19)
QT =i v ow v v, W (20)
ri=|-’" & | @

The vector Rand its components are defined by Equation (12). The explicit
expressions for the element stiffness matrix [k] are given in Appendix A. A
detailed derivation of the stiffness matrix can be found in Pinheiro (1991). It may
be noted that in the present formulation, energy methods have not been used
to derive the stiffness matrix. The equilibrium equations and constitutive relations
are directly satisfied. Hence, there is no shear locking in this element (Sankar,
1991).

Strain Energy Release Rate
It may be noted that the thermal stress problem is being solved by superposing

two problems. The first problem is a trivial one in which the displacements are
zero but stresses exist because of the constraint on thermal expansion. In the sec-
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ond problem, the thermal forces are reversed and applied as external forces. From
the fracture mechanics perspective, there is no singularity in the first problem, and
hence no stress intensity factor or strain energy release rate exists. The strain en-
ergy release rate values calculated in the second problem represent the G for the
free edge delamination problem.

In computing the strain energy release rate, arigid element is placed at the tip of
the crack connecting both sublaminates (Figure 3). The rigid element has nine de-
grees of freedom. Apart from the three displacements at each node, the three gen-
eralized forces, F,, transmitted by the rigid element are also considered as un-
known degrees of freedom. The constraint equations corresponding to the rigid
element are

fl 03 03 _13
HL|=103 03 I (22)

where ]_“ X and £ are the vector of nodal forces at nodes 1 and 2, and q, and q, are
the vector of nodal displacements. The symbol O, represents the 3 X 3 null matrix
and 75 the 3 x 3 identity matrix.

The procedures for computing the strain energy release rate using beam finite
elements can be found in Sankar (1991). A brief description is given here for the
sake of completion. Considering a zero volume path surrounding the crack tip as
shown in Figure 5, and knowing that for linear elastic fracture the J-integral is
equivalent to the energy release rate (Hellan, 1984), the expression for G is given
by

G=J=Ji+J,+J3+J, (23)

where J represents the J-integral value corresponding to the ith sublaminate (Fig-
ure 5). Substituting for the terms in the J-integral in terms of the strains, we obtain
(Sankar, 1991):

1
J= (e St €Sy e She — i S e) (24)

where ¢, is the deformation in the ith sublaminate, and S, and S, are the stiffness
matrices on the top and bottom sublaminates respectively as defined in Equation
(11). The strain energy release rate can also be expressed in terms of the force and
moment resultants in the sublaminate as follows (Sankar, 1991):

1
G=;ﬁ¢5+ﬂq&—dCQ—ﬂq&> (25)
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|
h I'1 4 T I'2,3
z element 1 Y | |element2
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Y
-4 F *
element 4 Y element 3
elements ahead elements behind
of the crack tip the crack tip

Figure 5. Zero-volume path for the J-integral.

where the force and moment resultants F; (i = 1,...4) are calculated from the finite
element solution. In Equation (25) C, and C,, are the compliance matrices of the top
and bottom sublaminates [see Equation (15)]. The elements 2 and 3 (Figure 5) are
in the uncracked region, so they are under the same deformations. We thus obtain
the following relations:

PR

Figure 6. Beam model for estimating the foundation spring constant.
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Substituting Equations (26) and (27) and also using the equilibrium relations F, +
F,=F, + F; in Equation (25), we obtain

1
G= E(El —F,)'(C,+C,)(F| - F,) (28)

Actually, (F, — F,) s the force transmitted by the rigid element between the bot-
tom and top crack tip nodes. Therefore, the strain energy release rate (G) can be ex-
pressed in a more convenient form as

1
G=2F/(C,+C)F, (29)

In the above equation F,,is the vector of forces and couple transmitted by the
rigid element, which is part of the finite element solution of the problem.

One can also evaluate the value of the strain energy release rate using a method
analogous to the virtual crack closure method in two-dimensional fracture prob-
lems (Hellan, 1984). In this method, the energy necessary to close the crack is
equal to the energy release rate. The expression for G that results from this method
is (Sankar, 1991)

G—z—aE,(gl—gz) (30)

where a is the length of the crack tip elements, i.e., the four elements connected to
the crack tip, and g and g, are the displacements of Nodes 1 and 2 as shown in Fig-
ure 3. Thus, the strain energy release rate can be computed by either Equation (29)
or Equation (30). In fact, we obtained identical results using both equations.

Stresses Ahead of the Crack Tip

Even though the strain energy release rate can be used as a criterion for the prop-
agation of delaminations, some researchers have used average stresses ahead of
the crack tip as a criterion for failure. Thus, the crack-tip stresses may be of some
interest. Strictly speaking, the stresses near the crack tip are singular; however, if
one is interested in stresses averaged over a given length, then approximate meth-
ods can be used to estimate the stresses. In evaluating the stresses ahead of the
crack tip, the nodes of the top and bottom sublaminate of the uncracked region
were connected by discrete spring elements (Figure 4). The ¢, stresses ahead of
the crack tip were computed as

F,

0. =2 3D
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where F is the spring force, a is the length of the element ahead of the crack-tip,
and b is the beam width (unity in the present case).

The determination of the spring constant for the spring elements is significantin
appropriately modeling the problem. Actually, the spring represents the elastic
foundation of the beam. Kanninen (1985) used a spring constant equal to 2E/h,
where E is the Young’s modulus and 4 is the thickness of the top or bottom beam.
In the present study, we used a more accurate approach (Appendix B) to estimate
the spring constant of the foundation as

_32E*
13h

(32)

where E* is the effective Young’s modulus in the thickness direction, and 4 is the
beam thickness. Considering the top and bottom sublaminates, we have two
springs placed in series, and hence the equivalent spring constant k can be ex-
pressed as

32E*

" T 1) =

where the subscripts 7 and b stand for top and bottom sublaminates respectively.
RESULTS AND DISCUSSION

Some results for the strain energy release rate and the interlaminar stresses in a
free edge specimen can be found in Whitney (1986), Pagano (1989), and Raju
(1986). These researchers computed results for the same composite specimen,
which is also used in the present study. Whitney and Pagano used a higher order
laminated plate theory which includes transverse shear deformation and a thick-
ness-stretch mode. The governing plate differential equations were solved in
closed-form to obtain solutions for deflections and stresses ahead of the crack tip.
The strain energy release rate was obtained by differentiating the compliance of
the specimen with respect to crack length. Raju used quasi-three-dimensional fi-
nite elements in conjunction with a crack closure method to compute the strain en-
ergy release rate.

The free-edge specimen width-to-thickness ratio (L/h) is 25, which is typical for
conventional edge delamination test (EDT) specimens. The ply properties are
E\/Ey =14, EyJEy=1, G5/E;=0.533, Gp/E, =0.323, v, =03, vy3=0.55,
o, =9 x 1077/°C, o, = 03 =9 x 1077/°C, where the 1-direction is parallel to the
fibers and the 3-direction is parallel to the z-axis. The thermal expansion coeffi-
cients in the x; direction are denoted by «;. These properties and relations among
them are typical of current high-performance graphite/epoxy unidirectional com-
posites.
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The specimens considered in the present study have the following lay-ups:
Specimen A: [904/0;];; Specimen B: [-60/60,/~60/0,],; Specimen C:
[-45/45,/-45/0,]5; Specimen D: [0,/-60/60,/-60]. A reasonable value for
stress-free temperature for standard graphite/epoxy laminates is 138°C (280°F)
(Whitney, 1986). Assuming 21°C (70°F) as the room temperature, the difference
in temperature (A7) that causes residual stresses in the plies is equal to —117°C
(210°F). The critical axial strains (ey) experimentally determined in edge
delamination tests are 0.3% for angle-ply laminates (Whitney, 1986). These are
the values of strains used in the numerical examples.

The normalized strain energy release rate, Gy, is given by

XS
E,he}

Gy (34)

The results obtained from the present method—using either of Equations (29)
or (30)—are compared with available results in Table 1. The numbers in parenthe-
ses indicate the percent difference between the corresponding result and that ob-
tained by the present method.

From Table 1 it can be seen that the present results compare very well with Raju
(1986) for all laminate configurations considered, whereas the comparison with
the other two methods is good in most cases. It should be mentioned that of the
three methods we compared, Raju (1986) used a detailed finite element analysis

Table 1. Comparison of strain energy release rate (G) from different
methods. G is in J/m?. Numbers in parentheses indicate percent
difference between the present results and others.

Laminate € (%) AT (°C) Whitney Raju Present
[-60/60,/-60/05]¢ 0.3 0 1.300 1.251 1.300
(0.0) (4.0)
0.3 -117 1.700 1.955 2.058
(21.6) (5.3)
[0,/—60/60,/-60]¢ 0.3 0 1.300 1.270 1.300
(0.0 (2.4)
0.3 -117 1.000 0.670 0.7160
(—28.4) (6.9)
[903/05]¢ 1.0 0 0.016 0.0155 0.0156
(2.5) (0.6)
1.0 -117 0.077 0.0605 0.0650
(-15.6) (0.0)
[-45/45,/-45/0,]5 0.3 0 0.770 0.7285 0.744
(-3.4) (2.1)
0.3 -117 0/800 0.9194 0.864
(8.0) (-6.0)
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using quasi-three-dimensional parabolic elements. It may be noted that both the
present method and the method used by Whitney use approximate plate theories to
model the free edge delaminations; hence, they are bound to differ from that of the
detailed finite element solution. However, we are able to obtain a good engineer-
ing solution with far less computational effort. In the present method, we have
used about twenty beam elements to model the free edge delaminating. It should
be noted that the results obtained in the present study do not depend on the crack
length. This situation is similar to the case of a double cantilever beam subjected to
equal and opposite end moments at each of the cracked ligaments, where the G de-
pends not on the crack length, but only on the magnitude of the end moments.
The interlaminar normal stresses ahead of the crack tip are evaluated using
spring elements in the uncracked region of the specimen. The spring constant for
these elements is calculated by Equation (33) and found to be equal to 300 x 10°
N/m. Figures 7-10 show the results for peel stresses for different laminate config-
urations, with and without thermal effects. In Figure 7, the stress distribution is
compared with Whitney (1986) for AT = 0°C and AT = —117°C for the specimen B
([-60/60,/-60/0,],), and the agreement is excellent. From the results, we find that
the effect of residual thermal stresses is an increase in the maximum peel stress at
the free edge. The effect is significant for Specimen A ([903/05],), and less signifi-
cant for Specimen C ([-45/45,/-45/0,];). This may be because in Specimen C the
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Figure 7. Normal stresses ahead of the crack tip for Specimen A.
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Figure 8. Normal stresses ahead of the crack tip for Specimen B.
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Figure 9. Normal stresses ahead of the crack tip for Specimen C.
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Figure 10. Normal stresses ahead of the crack tip for Specimen D.

layers are more dispersed than in Specimen A, in which the 0- and 90-degree lay-
ers appear in block. Thus, Specimen C exhibits more homogeneity and hence less
thermal residual stress effect than Specimen A.

SUMMARY

A shear deformable beam finite element with nodes offset to the top and bottom
sides of the beam is used to model the free-edge delaminating problem. The strain
energy release rate has been computed from the force and moment resultants in the
sublaminates surrounding the crack tip. A foundation spring model is used to esti-
mate the peel stresses ahead of the crack tip. The results are in good agreement
with available results for various laminate configurations including the effects of
thermal stresses due to the curing process.
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APPENDIX A

The non-zero coefficients of the 6 x 6 symmetric stiffness matrix [k] of a beam
finite element with offset nodes are given below. The nodes are situated on the bot-
tom side of the laminate, i.e., z is positive everywhere in the laminate. The element
length is /, and the width in the x-direction is assumed to be unity. The degrees of
freedom in the appropriate order are vy, Y, wy, v, Y, and wy. kjy =ay /L,
kiy=byll, kyg=—ky, kis=—kio, kn=dn/l+assll4, k= —ass/2, ko =kis.
kys = —dy/l + assll4, kye=ass/2, k33 =assll, kys=kos, kso=—k3z kas=kyy,
kys = ki, kss = kaa, kse = kae, ke = k33.

For a laminate with nodes offset to the top, i.e., z is negative in the entire lami-
nate, the element stiffness matrix can be obtained by appropriate coordinate trans-
formation.

APPENDIX B

A simple procedure for determining the foundation constants is explained
in this section. Consider an isotropic beam subjected to uniformly distributed
forces (Figure 6). Following Timoshenko and Goodier (1970), we have, for this
case

_ 3 (15 5, .23
8”'—_4C3E*(5y —-C y+§C (35)

where E* is defined as

E
E*=
1—2

(36)

The vertical displacement (v) is obtained by integrating the deformation €, in the
y-direction. The result is

3q (ﬁ _cty?

2
- +=c3y |+ C 37
AE*\12 2 3 y) ! G7)

v= J.Eyydy =

where C, is a constant. From Equation (37), the displacements at the positions
y=—c and y = 0 are determined as
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13 gc
v(—c) = CE" +C (38)
v0)=C, 39)

and the relative displacement between these two particular positions as

B g

Vg =v(—c)—v(0) = 6 E*

(40)

For a beam element of unit length and unit width, the total load P = g. In the pres-
ent case, ¢ is equal to half the thickness of the beam (¢ = A/2). Therefore, Equation
(40) can be rewritten as
*
_32E* v @1)
13h
From Equation (41) we have the value for the spring constant per unit length as

k=2 (42)

It may be noted that this value is slightly higher than the conventional founda-
tion constant 2E*/h. For orthotropic beams, E* can be approximated by the
Young’s modulus in the thickness direction of the beam.
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