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Abstract

A numerical simulation is performed to predict the e�ects of stitching on the low-velocity impact response of stitched delami-

nated beams. The load/displacement relations during the impact are assumed to be the same as in the corresponding static problem.
Hence a solution to the problem of a stitched delaminated beam under a static contact force is developed. The e�ects of stitches are
modeled as a constant shear traction in the stitch bridging zone to account for the shear resistance o�ered by the unbroken stitches.

From the static simulation the load/displacement and displacement/crack-extension relations are obtained. From the area under the
load/de¯ection diagram the apparent fracture toughness due to the stitching is also estimated. The impact simulations provide
information on the load at which the crack propagation initiates, the maximum contact force, and the extent of crack propagation
at the end of the impact event. The results indicate that stitching does not increase the load at which delamination begins to pro-

pagate, but greatly reduces the extent of delamination growth at the end of the impact event.# 2000 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

Currently various types of translaminar reinforce-
ments are being studied in order to improve the inter-
laminar strength and fracture toughness of both
composite laminates [1], and sandwich constructions [2].
A comprehensive study by Sharma and Sankar [3]
demonstrated that stitching is very e�ective in improv-
ing the compression-after-impact (CAI) strength and
Mode I fracture toughness of carbon/epoxy laminates,
and moderately e�ective in improving the Mode II
fracture toughness. Sharma and Sankar found that
stitching did not signi®cantly increase the impact-energy
threshold for initiation of damage. However the extent
of delamination at the end of impact was reduced as a
result of the stitching. This e�ect was again not sig-
ni®cant in thin laminates, whereas Poe et al. [4] found
that stitching improves the impact resistance of thicker
laminates. Similar ®ndings have been reported by Dexter
and Funk [5] and Peistring and Madan [6].

There have been several analytical studies on the pre-
diction of the e�ects of stitching on the fracture toughness
of composite laminates [7±11]. In the present paper we
have developed an analytical model to predict the e�ec-
tiveness of stitching on improving the impact properties
of composite laminates. An impact simulation is per-
formed to determine the maximum contact force and
extent of delamination propagation in a stitched laminate
due to low-velocity impact. Various stitch parameters
such as stitch density are considered and the results are
compared to unstitched laminates also. As part of the
study, the corresponding static problem was also con-
sidered. The beam was subjected to a static force and
quasi-static delamination propagation was studied.
From these results one can obtain results for the
apparent Mode II fracture toughness of stitched speci-
mens. The results indicate that stitching is e�ective in
reducing the delamination area due to low-velocity
impact.
Conventionally, stitches have been modeled as linear

elements, either as uniaxial bar or beam. The sti�ness of
the stitch elements can be either linear up to failue or
non-linear to account for inelastic e�ects. Such models
are useful when the stitches are under Mode I fracture.
A major di�erence between the impact loading and the
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inplane compressive loading (CAI Test) is that the
delamination is under pure Mode II (shearing mode)
conditions during impact, whereas it is predominantly
under Mode I during sublaminate buckling in CAI tests.
Previous experimental studies by Sharma and Sankar [3]
have found that under pure Mode II, the stitches try to
plough through the matrix material, and the resistance
o�ered by the matrix is responsible for increase in
apparent fracture toughness. Thus the stitch model has
to be modi®ed in impact problems to account for the
``ploughing'' phenomenon.

2. Analytical model

2.1. Basic assumptions

Several assumptions are made to simplify the impact
simulation. Some of these assumptions are typical of
low-velocity impact problems [12]. The assumptions
regarding stitch modeling are based on the experimental
observations of Sharma and Sankar [3]. The assump-
tions are as follows:

1. The velocity of impact is low compared to the velo-
cities of wave propagation in the composite beam;

2. The projectile is assumed to be rigid compared to
the target. Therefore the impactor can be treated
as a rigid body and thus its equation of motion
will be greatly simpli®ed;

3. The target, laminated beam in the present case, is
highly ¯exible. That is, the de¯ection of the beam
is expected to be much higher than the local
indentation, and hence the Hertzian indentation
e�ects can be neglected;

4. The impactor mass is much greater than that of
the beam, and hence the impact duration will be
very long compared to the fundamental period of

vibration of the beam. Therefore the target can be
represented by a simple spring/mass system. The
sti�ness of the spring can be approximated by the
static beam sti�ness k at the impact location;

5. A central delamination is assumed to be pre-existing
in the laminated beam. The delamination is sym-
metrically located in the simply supported beam
(see Fig. 1). The distance of the delamination from
the laminate mid-plane is considered as a variable
in this study.

Because of Assumption 4 above, we need to compute
only the static sti�ness of the delaminated stitched beam
as a result of central transverse force.
We will assume that the delamination will propagate

along the same plane when the energy-release rate G
exceeds GIIc, the Mode II fracture toughness of the
parent laminate. As the delamination propagates the
stitches in the wake of delamination will undergo strains
leaving a crack-bridging zone behind the crack-tip. The
crack-bridging tractions are assumed to be a constant.
The crack-bridging forces are essentially the resistance
o�ered by the matrix as the stitches tend to plough
through the matrix. The ploughing resistance of the
stitches can be represented as a distributed shear trac-
tion (force/unit length) at the interface of the two sub-
laminates that are stitched together. The traction p0 is
estimated as

p0 � B

S

Dh�y

n
�1�

where B is the beam width, D is diameter of stitch yarn,
h is the lesser of the two sublaminate thicknesses, �y, is
yield stress of the surrounding matrix, S is the stitch
spacing in the width direction and n is the number of
stitches per inch. In terms of stitch density the dis-
tributed traction can be written as:

Fig. 1. A beam under impact.
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p0 � NBDh� �2�

where N � 1= n� S� � is the number of stitches per unit
area of the laminate. As the delamination propagates
new stitches come into action in the freshly created
delamination areas, and they o�er additional shear
resistance. This assumption is consistent with the
experimental observations of Sharma and Sankar [3]. It
should be mentioned that many other models can be
developed to represent the shear tractions, however the
focus of this study is to understand their e�ects on the
impact response.

2.2. Impact equations

The equation of motion of the impactor along with
the initial conditions can be written as:

M0
d2q

dt2
� ÿF q� � �3�

q 0� � � 0 �4�

dq

dt
t�0j � V0 �5�

where M0 is the impactor mass, q is the impactor dis-
placement which is same as the transverse de¯ection of
the target beam at the point of impact, V0 is the initial
velocity of the impactor or the impact velocity, and F q� �
is the contact force. The contact force F is a function of
the beam de¯ection. The contact force, F, will be a linear
function of q if there were no stitches or delamination
propagation. However, in the present case it will be a
non-linear function. Once F q� � is determined, then the
equations of motion [Eqs. (3)±(5)] can be numerically
integrated to obtain q t� �. From q t� � one can compute the
impact force history, F t� �, using the F=q relationship. In
the following section, we discuss the procedure for
determining the F=q relationship in a stitched delami-
nated beam.

2.3. Static force/de¯ection relation

The problem to be solved in this section is depicted in
Fig. 2. The problem is to ®nd the relation between
transverse force F and de¯ection q at the center of the
beam in the delaminated stitched beam. Further, the
energy-release rate G at the crack-tip needs to be com-
puted also. In the numerical simulation, the crack will
be propagated by a small distance (symmetrically on
both sides), if the G exceeds GIIc of the parent laminated
material system.
First, we will provide an overview of the procedures

to be followed. Since the structure is symmetric we can
analyze the right half of the beam as shown in Fig. 3.
The half-crack length is denoted by a and L is the length
of the intact beam as shown in Fig. 3.The right half
beam can be divided into three elements: elements 1, 2
and 3 denoted as <1>, <2> and <3> in Fig. 3. Free
body diagrams of the three elements are shown in Fig.
4. The x-axis is along the length of the beam and the z-
axis is the thickness direction. At each node (end) of the
element there are three displacements, u, w and  and
three corresponding forces, Fx, Fz and C. The u and w
are the displacements in the x and z directions and  is
the rotation of the cross-section. Fxi and Fzi are external
forces in the axial direction and transverse direction,
respectively, and Ci is the nodal couple corresponding
to the rotation  . Odd indices i i � 1; 3; 5� � denote the

Fig. 3. Right half side of specimen in Fig. 2 and the three sub-

laminates.

Fig. 2. A delaminated beam with stitches subject to impact load F.

B.V. Sankar, H. Zhu /Composites Science and Technology 60 (2000) 2681±2691 2683



left end node of each element and even indices
i � 2; 4; 6� � correspond to the right end nodes.
We use the shear deformable beam theory in model-

ing the beams. The di�erential equations of equilibrium
of a general element are given in Appendix A. These
equations can be easily solved as described in Appendix
A to obtain a relation between the six forces acting at
the two nodes of the element and the six corresponding
displacements. In order to relate the forces in the three
di�erent elements we use force and moment equilibrium
equations, and compatibility equations at the junctions
(common node) where the three elements meet. Further,
the boundary conditions at the ends of the beam can
also be implemented. This procedure is similar to
assembling elements in the ®nite element method except
the sti�ness matrix of each element is obtained exactly
by solving the di�erential equations of equilibrium. The
forces and displacements in each element are shown in
Fig. 4. It should be noted that F is the contact force
acting on the beam, and because of symmetry F=2 is
assumed to act at Node 1 of Element 1. The compat-
ibility relation for the axial displacements at the common
node is depicted in Fig. 5.
The force and moment equilibrium equations, the

compatibility equation and boundary conditions are as
follows. Force and moment equilibrium equations are:

Fx2 � Fx4 � Fx5 � 0 �6�
Fz1 � Fz3 � ÿF

2
�7�

Fz2 � Fz4 � Fz5 � 0 �8�

C2 � C4 � C5 � Fx2
h2
2
ÿ Fx4

h1
2
� 0 �9�

Compatibility equations at the common nodes are:

u2 � u5 � h2
2
 5 �10�

u4 � u5 ÿ h1
2
 5 �11�

w2 � w4 � w5 �12�

 2 �  4 �  5 �13�

Boundary conditions:

u1 � u3 � 0 �14�

 1 �  3 � 0 �15�

w1 � w6 �16�

w6 � Fx6 � C6 � 0 �17�

Expressions of Fxi, Fzi andCi are derived in Appendix A.
After implementing the aforementioned element

equilibrium conditions and displacement compatibility
conditions at the nodes, a compact set of ®ve equations
are obtained for the ®ve displacements w1, u5, w5,  5

and  6 as shown in Eq. (18).

k11 k12 k13 k14 k15
k21 k22 k23 k24 k25
k31 k32 k33 k34 k35
k41 k42 k43 k44 k45
k51 k52 k53 k54 k55

266664
377775

w1

u5
w5

 5

 6

8>>>><>>>>:

9>>>>=>>>>; �
f1
f2
f3
f4
f5

8>>>><>>>>:

9>>>>=>>>>; �18�

The sti�ness coe�cients kij i � 1; 5; j � 1; 5� � and the
generalized forces f1 . . . f5 on the right hand side of Eq.
(18) are given in Appendix B.
In Eq. (18) the forces f2 . . . f5 are known. The force f1,

related to the contact force F, by f1 � F=2, is the
unknown. On the other hand, the de¯ection w1 (same as
the variable q used in impact equations) can be treated
as known, and the other ®ve displacements are

Fig. 4. Free body diagrams of sublaminates <1>, <2> and <3>.

Fig. 5. Compatibility of displacements in axial direction at the junc-

tion between the three sublaminates.
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unknowns. Thus we have ®ve equations for ®ve
unknowns. The equations can be solved for a given w1 to
determine f1 or the contact force/displacement F=q rela-
tions can be developed. The ¯owchart in Fig. 6 describes
the procedure used in developing the F=q relations.

2.4. Energy-release rate calculation

At each displacement increment the energy-release
rate G is computed using the procedure explained in the
next paragraph. If the value of G exceeds the Mode II
fracture toughness GIIc, the length of the delamination is
increased by a small amount. The numerical value of the
extension is arrived by an interative method until G
equals GIIc for that de¯ection increment.
In order to compute the G, we used the strain-energy

density method derived by Sankar [13] and then later
used by Sankar and Sonik [14] and Sankar and Park
[15] for computing the point-wise energy-release rate in
delaminated plates. This method is very much suitable for
the present model as the force and moment resultants
ahead and behind the crack-tip can be obtained in a
closed-form from the solution of the di�erential equations
of equilibrium, and the energy-density values thus calcu-
lated are very accurate. Consider the three elements sur-
rounding the crack-tip as shown in Fig. 3. There are two
(Elements 1 and 2) behind the crack-tip and one ahead of
the crack-tip (Element 3). The G is derived as:

G � 1

B
U

1� �
L �U

2� �
L ÿU

3� �
L

� �
�19�

where UL represents the strain-energy density per unit
length of the beam, and the superscripts (1) and (2)
denote the cross-sections immediately behind the crack
tip and (3) denotes the cross-section immediately ahead
of the crack-tip and B is the width of the beam in the y-
direction. The strain-energy density in terms of force
and moment resultants is given by:

UL � 1

2

P2

EA
�M2

EI
� V2

GA

� �
�20�

where P, M and V are the axial force, bending moment
and shear force resultants; EA, EI and GA are the
equivalent axial, ¯exural and shear rigidities of the
beam cross-section.

2.5. Impact simulations

After computing the F=q relation for a beam, the
impact equations [Eqs. (3)±(5)] can be solved numerically.
The F=q relations computed from the static analysis were
stored in a spread sheet program (ExcelTM). The expression
for F q� � on the RHS of Eq. (3) can be approximated by a
linear interpolation in each small step as:

F q� � � F1 � F2 ÿ F1

q2 ÿ q1� � qÿ q1� � �21�

where q1 and q2 are impactor initial and ®nal displace-
ments and F1 and F2 are initial and ®nal contact force in
each step.
From Eq. (3), a relation between contact force F and

velocity V can derived as follows:

M
d

dt

dq

dt

� �
� ÿF q� � �22�

where

dq

dt
� V �23�

Substituting from Eq. (23) into Eq. (22) and modify-
ing the resulting equation a new equation, relating the
contact force F q� � and the impact velocity V can be
obtained as

M
dV

dq

dq

dt
� ÿF q� � �24�

Substituting from Eq. (23) into Eq. (24) and integrat-
ing both sides of the equation, the relation between V
and F q� � can be derived as:Fig. 6. Flow chart for computing the F=q relations.
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1

2
M V2

2 ÿ V2
1

ÿ � � ÿ�q2
q1

F q� �dq �25�

Substituting from Eq. (21) into Eq. (25) the velocity
can be expressed in following form:

V2 �
������������������������������������������������������
V2

1 ÿ
1

M
q2 ÿ q1� � F1 � F2� �

r
�26�

where V1 and V2 are the initial and ®nal velocities in
each step.
The corresponding impact time can be derived using

Eq. (23) by assuming that the impact velocity in each
step varies linearly:

V q� � � V1 � V2 ÿ V1

q2 ÿ q1
qÿ q1� � �27�

where q1 and q2 are impactor initial and ®nal displace-
ments in each step. Substituting Eq. (27) into Eq. (23)
we derive the following integral equation:�t2
t1

dt �
�q2
q1

dq

V q� � �
�q2
q1

dq

V1 � V2 ÿ V1� � qÿ q1� �
q2 ÿ q1� �

�28�

Integrating Eq. (28), an expression for time t2 can be
obtained as:

t2 � t1 � q2 ÿ q1� �
V2 ÿ V1� � ln

V2

V1
�29�

where t1 and t2 are initial and ®nal time in each inte-
gration step. Eq. (29) provides the q=t relation for the
impact problem. From that, using F=q relations, we can
obtain the F=t relation or the impact force history. Since
we know the delamination length at each displacement
in the static problem, i.e. a=q relation, we can translate
that into a=t relation, and thus the propagation of
delamination can be followed.

3. Numerical examples, results and discussion

The specimen dimension and material properties used
in the impact simulation are as follows: half-length of
the beam=101.6 mm, initial crack length a0 � 27:4 mm,
beam width B � 25:4 mm, equivalent Young's modulus
Eeq � 90:375 GPa, and equivalent shear modulus Gxy �
6:8 GPa. Stitching material is 3570 denier1 glass yarn
and yield strength of the matrix is 40 MPa. The prop-
erties of the laminate and stitch yarn are obtained from
Sharma and Sankar [3]. Nine di�erent examples were

studied. In these examples, the impactor mass, impact
velocity, position of the delamination in the thickness
direction and the Mode II fracture toughness GIIc were
varied. The parameters used in these examples are listed
in Table 1.
In Table 1, H is the total thickness of the beam and h1

is the distance of delamination from the top surface
(impact surface). For each example three di�erent
cases Ð beam w/o stitching, 16 stitches per square inch
(ssi) stitches, and 64 ssi stitches Ð were considered.
Thus a total of 27 impact simulations were performed.
The simulations were stopped when the contact force
becomes equal to zero denoting the contact between the
impactor and the beam has ceased. In two cases
(Example 2, w/o stitches and 16 ssi stitches) the simulation
has to be stopped when the delamination propagated all
the way to the ends of the beam.
From the static analysis we obtain the load/de¯ection

relation (F=q) and the delamination/de¯ection relation
(a=q). Sample F=q relations for Example 1 are shown in
Fig. 7. The F=q relation is linear until the crack begins

1 Denier is a measure of yarn linear density, and it is equal to the

mass in grams of 9000 m of yarn.

Table 1

Various parameters used in numerical examplesa

Example M0

(kg)

V0

(m/s)

T

(J)

Position of

delamination

(h1=H)

GIIc

(J/m2)

1 5 1.5 5.625 0.5 530

2 5 1.5 5.625 0.5 300

3 1.25 3 5.625 0.5 530

4 2.5 1.5 2.813 0.5 530

5 2.5 1.5 2.813 0.5 300

6 5 1.5 5.625 0.25 530

7 5 1.5 5.625 0.25 300

8 2.5 1.5 2.813 0.25 530

9 2.5 1.5 2.813 0.25 300

a m0, Impactor mass; V0, impact velocity; T, impact energy.

Fig. 7. Contact force F versus center de¯ection q for GIIc � 530 J/m2.
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to propagate. It may be noted that the load at which the
crack begins to propagate is almost the same for all
three cases (w/o stitches, 16 ssi and 64 ssi stitches). After
that the curves take di�erent shapes depending on the
stitch density. The maximum load that the beam can
carry very much depends on the stitch density. The 64
ssi beam carries about 50% more load than the unstit-
ched beam. The unloading was assumed to be linear and
hence the unloading curve was a straight line joining the
origin. This assumption is validated by the Mode II
experiments conducted by Sharma and Sankar [3,16].
Another interesting result that can be deduced from

the static load/de¯ection curve is the apparent fracture
toughness of stitched laminates. The area enclosed by
the load/de¯ection diagram (Fig. 7) denotes the work of
fracture. Since we know the extent of delamination
propagation we can compute the apparent fracture
toughness GIicap from:

GIIcap � �W

�A

where �W is the work done and �A is the new delami-
nation surface created. The apparent fracture toughness
for various cases is presented in Table 2 along with that
for unstitched laminates. The numbers in parentheses
are the percentage increase in apparent fracture tough-
ness. It may be seen that the percentage increase in GIIc

is higher for laminates with lower fracture toughness.
The results for each impact analysis include the complete

impact force history (F=t) and the delamination propaga-
tion history (a=t). A sample impact-force history is
shown in Fig. 8. In general stitched beams carry more
impact force, provided the impact energy is su�cient to
cause delamination propagation. For low impact energies,
the impact-force history will be identical in stitched and
unstitched beams, because the stitches come into e�ect
only when there is su�cient energy to propagate the
delamination.
The results presented in Table 3 show for each case,

the impact energy, GIIc of the parent material system,
the contact force Fi at which the delamination began to
propagate, the ®nal crack length amax and the maximum
contact force Fmax during the impact event. The extent
of delamination propagation is also shown in the bar
charts in Figs. 9 and 10. Fig. 9 considers the examples

Table 2

E�ect of stitching on the apparent GIIc GIICAp

ÿ �
a

Case GIIc (J/m
2) GIIcAp for l6 ssib GIIcAp for 64 ssib

1 530 595 (12%) 707 (33%)

2 300 344 (15%) 430 (43%)

a Numbers in parentheses indicate percentage increase in GIIc due to

stitching.
b ssi, Stitches per square inch.

Fig. 8. Contact force F versus time t for GIIc � 530 J/m2.

Table 3

Contact force crack extension in various examplesa

Example h1=H Case Fi

(N)

amax

(mm)

Fmax

(N)

Example 1 0.5 w/o stitch 553 56.4 645

T � 5:6125 J l6ssi 562 50.4 678

GIIC � 530 J/m2 64ssi 577 44.4 713

Example 2 0.5 w/o stitch 416 101.4 431

T � 5:6125 J l6ssi 423 101.4 465

GIIc � 300 J/m2 64 ssi 438 59.4 679

Example 3 0.5 w/o stitch 553 56.4 645

T � 5:6125 J l6ssi 562 50.4 678

GIIc � 530 J/m2 64ssi 577 44.4 712

Example 4 0.5 w/o stitch 545 27.4 545

T � 2:813 J l6ssi 546 27.4 546

GIIc � 530 J/m2 64 ssi 548 27.4 546

Example 5 0.5 w/o stitch 416 49.4 478

T � 2:813 J l6ssi 425 44.4 496

GIIc � 300 J/m2 64ssi 438 39.4 517

Example 6 0.25 w/o stitch 569 47.4 708

T � 5:6125 J l6ssi 571 46.4 711

GIIc � 530 J/m2 64ssi 578 44.4 721

Example 7 0.25 w/o stitch 428 74.4 646

T � 5:6125 J l6ssi 431 67.4 667

GIIc � 300J/m2 64 ssi 437 60.4 692

Example 8 0.25 w/o stitch 547 27.4 547

T � 2:813 J l6ssi 548 27.4 548

GIIc � 530 J/m2 64 ssi 549 27.4 549

Example 9 0.25 w/o stitch 428 43.4 507

T � 2:813 J l6ssi 431 41.4 511

GIIc � 300 J/m2 64ssi 437 40.4 518

a F, Contact force at crack initiation; Fmax, maximum contact force

during the impact event; amax, crack length at the end of impact event.
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wherein GIIc � 530 J/m2 and Fig. 10 corresponds to
GIIc � 300 J/m2.
There are many interesting observations that can be

made from the results presented in Table 3. The contact
force at which the delamination propagates is almost
the same in unstitched and stitched beams. This initia-
tion force depends only on the GIIc and the position of
the crack (h1=H). Thus it does not depend on impact
parameters such as impact energy. We have tacitly
assumed that GIIc is a constant independent of the
loading rate.
In general, the extent of crack propagation at the end

of the impact event is the least in the 64 ssi beam and
the highest in the unstitched beams. The result for 16 ssi
beams are somewhere in between. This can also be
observed readily from the bar charts in Figs. 9 and 10.
However the amount of delamination propagation
depends also on the impact energy, GIIc and h1=H.
Stitching is very e�ective in the beam with lower inher-
ent fracture toughness. In Example 2 (GIIc � 300 N/m)
the crack propagates all the way to the ends of the beam
in the unstitched and 16 ssi specimens, whereas the
crack propagated up to a=59.4 mm in the 64 ssi beam.

In Example 1 (GIIc � 530 N/m), the stitches were able to
reduce the delamination extension by about 6±12 mm.
Stitches are also more e�ective when the crack is in

the middle plane of the laminate (h1=H � 0:5) compared
to the cases wherein the crack is near the top surface of
the beam (h1=H � 0:25). This can be explained as fol-
lows. In an undelaminated beam, the shear stresses are
higher at the midplane (1 .5 times the average shear
stress) compared to the plane at 1/4 distance form the
top. Thus, when the delamination is at the mid-plane
the tendency for propagation is much higher. In fact the
energy release rate G is higher for mid-plane delamina-
tions. Thus the stitches play a very useful role in pre-
venting crack propagation. This situation is similar to
the e�ectiveness of stitches for various GIIcs.
The stitches become more e�ective at higher impact

energies when the propensity for crack propagation is
also higher. This is because the stitches become active
only if there is a delamination. Comparing Examples 1
and 4 in Fig. 9, one can see this phenomenon. In
Example 4, the impact energy was very low so that
stitching was not necessary. However, in Example 1, the
e�ectiveness of stitch density could be inferred.
From the above discussion we can arrive at the fol-

lowing conclusions:

1. Static simulations of delaminated stitched beams
provide an estimate of the apparent fracture
toughness of the stitched laminates. The stitch
density signi®cantly a�ects the increase in appar-
ent fracture toughness. The percentage increase is
more for laminates with lower inherent fracture
toughness.

2. The impact force at which the delamination begins
to grow is not dependent on stitching. However,
after the delamination growth is initiated, stitches
come into play, and the extent of delamination
growth depends on the stitching parameters. In
general, the extent of crack propagation at the end
of an impact event is small for higher stitch den-
sities.

3. Stitching is e�ective when the impact energies are
higher and the propensity for delamination growth
is also higher.

4. Stitching is more e�ective when the delamination
is at the center.
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Fig. 9. Crack growth due to impact for GIIc � 530 J/m2. Bar 1, initial

crack length; Bar 2, unstitched beam; Bar 3, 16 ssi stitches; Bar 4, 64

ssi stitches.

Fig. 10. Crack growth due to impact for GIIc � 300 J/m2. Bar 1, initial

crack length, Bar 2, unstitched beam; Bar 3, 16 ssi stitches; Bar 4, 64

ssi stitches.
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Appendix A. Derivation of force/displacement relations
in the beam element

In this Appendix, the derivations for external forces
Fxi, Fzi and momentsCi described in Section 2.3 are given.
Consider Part <1> of the beam shown in Fig. A1.

Pi, Vi, and Mi i � 1; 2� � are internal force and moment
resultants and p0 is shear force provided by stitches. The
relations between external forces and internal force
resultants the at left side of a beam and the right side of
a beam are given as follows:

Fx1 � ÿP1

Fz1 � ÿV1

C1 � ÿM1 �A1�

Fx2 � P2

Fx2 � V2

C2 �M2 �A2�

Now we consider the internal force P in axial direc-
tion in the segment in Fig. A2.
The di�erential equations of equilibrium are:

A1E1
d2u

dx2
� dP

dx
� p0 �A3�

A1E1
du

dx
� P �A4�

Here, A1 is area of cross-section of part <1>, E1 is
Young's modulus of part <1>. Substituting boundary
condition at x � 0, u � u1, at x � a, u � u2 into Eqs.
(A3) and (A4) and using the equations in (A1) and (A2),
we have following expressions of Fx1 and Fx2:

Fx1 � A1E1

a
u1 ÿ u2� � � p0a

2
�A5�

Fx2 � A1E1

a
u2 ÿ u1� � � p0a

2
�A6�

Consider the segment in Fig. A3 for deriving the
expressions for Fzi and Ci i � 1; 2� �:
The M and V in an arbitrary cross-section can be

expressed as:

E1I1
d 

dx
�M �M1 � V1xÿ p0x

h1
2

�A7�

G1A1  � dw

dx

� �
� V � V1 �A8�

Here, I1 is moment of inertia and G1 is shear modulus
of part <1>
At x � 0

w � w1;  �  1;V � V1;M �M1 �A9�

At x � a

w � w2;  �  2;V � V2;M �M2 �A10�

Solving Eqs. (A7) and (A8) and using boundary con-
ditions in Eqs. (A9) and (A10), we can have the rela-
tions between Vi, Mi amd wi, �i, then Fzi and Ci can be
expressed in term of wi, �i as given below:

Fz1 � 1

A1a
w1 ÿ a

2
 1 ÿ w2 ÿ a

2
 2 ÿ p0h1a

3

23E1I1

� �
�A11�

Fz2 � 1

A1a
ÿw1 � a

2
 1 � w2 � a

2
 2 � p0h1a

3

23E1I1

� �
�A12�

C1 � ÿ w1

2A1
�  1

E1I1
a
� a

4A1

� �
� w2

2A1

�  2
a

4A1
ÿ E1I1

a

� �
� p0h1a

3

48E1I1
ÿ p0h1a

4
�A13�

C2 � ÿ w1

2A1
�  1 ÿE1I1

a
� a

4A1

� �
� w2

2A1

�  2
a

4A1
� E1I1

a

� �
� p0h1a

3

48E1I1
ÿ p0h1a

4
�A14�

Fig. A1. Free body diagram in part <1>.

Fig. A2. Free body diagram in axial direction. Fig. A3. Free body diagram in an arbitrary section.
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where

A1 � 1

G1A1
� a2

12E1I1

Free body diagram of portion <2> is shown in Fig.
A4.
The procedure for deriving the expressions for Fxi, Fzi

and Ci i � 3; 4� � is similar to that one in part <1>, and
the results are:

Fx3 � ÿ p0a

2
� A2E2

a
u3 ÿ u4� � �A15�

Fx4 � ÿ p0a

2
� A2E2

a
u4 ÿ u3� � �A16�

Fz3 � 1

A2a
ÿ p0h2a

3

24E2I2
� w3 ÿ  3a

2
ÿ w4 ÿ  4a

2

� �
�A17�

Fz4 � 1

A2a

p0h2a

24E2I2
ÿ w3 �  3a

2
� w4 �  4a

2

� �
�A18�

C3 � ÿ w3

2A2
�  3

a

4A2
� E2I2

a

� �
� w4

2A2

�  4
a

4A2
ÿ E2I2

a

� �
� p0h2a

3

48E2I2A2
ÿ p0h2a

4
�A19�

C4 � ÿ w3

2A2
�  3

a

4A2
ÿ E2I2

a

� �
� w4

2A2

�  4
a

4A2
� E2I2

a

� �
� p0h2a

3

48E2I2A2
ÿ p0h2a

4
�A20�

A2 is area of cross-section, E2 is Young's modulus and
G2 is shear modulus in part <2> and A2 is given by:

A2 � 1

G2A2
� a2

12E2I2

The free body diagram of part <3> is shown in Fig.
A5:
We can derive expressions for Fxi, Fzi and Ci i � 5; 6� �

as given below:

Fx5 � A3E3

L
u5 ÿ u6� � �A21�

Fx6 � A3E3

L
u6 ÿ u5� � �A22�

Fz5 � w5

A3L
ÿ  5

2A3
ÿ w6

A3L
ÿ  6

2A3
�A23�

Fz6 � ÿ w5

A3L
�  5

2A3
� w6

A3L
�  6

2A3
�A24�

C5 � ÿ w5

2A3
� E3I3

L
� L

4A3

� �
 5 � w6

2A3

� ÿE3I3
L
� L

4A3

� �
 6 �A26�

C6 � ÿ w5

2A3
� ÿE3I3

L
� L

4A3

� �
 5 � w6

2A3

� E3I3
L
� L

4A3

� �
 6 �A27�

A3 is area of cross-section, E3 is Young's modulus and
G3 is shear modulus in part <3>, and A3 is given by:

A3 � 1

G3A3
� L

12E3I3

Appendix B

The sti�ness coe�cients kij i � 1; 5; j � 1; 5� � and the
generalized forces f1 . . . f5 on the right hand side of Eq.
(18) are given as follows:

k12 � k15 � k21 � k23 � k25 � k32 � k51 � k52 � 0

k11 � 1

B1a
� 1

B2a

k13 � k31 � ÿ 1

B1a
ÿ 1

B2a

k14 � k41 � ÿ 1

2B1
ÿ 1

2B2

k22 � A1E1

a
� A2E2

aFig. A4. Free body diagram in part <2>.

Fig. A5. Free body diagram in part <3>.
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k24 � k42 � A1E1h2
2a

ÿ A2E2h1
2a

k33 � 1

B1a
� 1

B2a
� 1

B3L

k34 � k43 � 1

2B1
� 1

2B2
ÿ 1

2B3

k35 � k53 � ÿ 1

2B3

k44 � E1I1
a
� a

4B1
� E2I2

a
� a

4B2
� E3I3

L
� L

4B3
� A1E1h

2
2

4a

� A2E2h
2
1

4a

k45 � k54 � L

4B3
ÿ E3I3

L

k55 � E3I3
L
� L

4B3

f1 � ÿF

2
� p0h1a

2

24E1I1B1
� p0h2a

2

24E2I2B2

f3 � ÿ p0h2a
2

24E2I2B2
ÿ p0h1a

2

24E1I1B1

f4 � ÿ p0h1a
3

48E1I1B1
ÿ p0h2a

3

48E2I2B2

f2 � f5 � 0

The expressions for B1, B2 and B3 used in above
expressions are as follows:

B1 � 1

G1A1
� a2

12E1I1

B2 � 1

G2A2
� a

12E2I2

B3 � 1

G3A3
� L2

12E3I3

Note that Ei and Gi are the equivalent Young's mod-
ulus and shear modulus, respectively, and Ai and Ii are
area of cross-section and moment of inertia of the cor-
responding beam element.
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