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Abstract

An elasticity solution is obtained for a functionally graded beam subjected to transverse loads. The Young’s modulus of the beam is
assumed to vary exponentially through the thickness, and the Poisson ratio is held constant. The exponential variation of the elastic
stiffness coefficients allow an exact solution for the elasticity equations. A simple Euler–Bernoulli type beam theory is also developed

on the basis of the assumption that plane sections remain plane and normal to the beam axis. The stresses and displacements are
found to depend on a single non-dimensional parameter for a given variation of Young’s modulus in the functionally graded direc-
tion. It is found that the beam theory is valid for long, slender beams with slowly varying transverse loading. Stress concentrations

occur in short or thick beams. The stress concentrations are less than that in homogeneous beams when the softer side of the func-
tionally graded beam is loaded. The reverse is true when the stiffer side is loaded. # 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Functionally graded materials (FGM) possess proper-
ties that vary gradually with location within the material.
For example, a rocket-motor casing can be made with a
material system such that the inside is made of a refractory
material, the outside is made of a strong and tough metal,
and the transition from the refractory material to the
metal is gradual through the thickness. FGMs differ from
composites wherein the volume fraction of the inclusion
is uniform throughout the composite. The closest ana-
logy of FGMs are laminated composites, but the latter
possess distinct interfaces across which properties
change abruptly. Although fabrication technology of
FGMs is in its infancy, there are many advantages to
them. Suresh and Mortensen [1] provide an excellent
introduction to the fundamentals of FGMs.
As the use of FGMs increases, for example, in aero-

space, automotive and biomedical applications, new
methodologies have to be developed to characterize
FGMs, and also to design and analyze structural compo-
nents made of these materials. The methods should be
such that they can be incorporated into available methods
with least amount of modifications, if any. One such pro-
blem is that of response of FGMs to thermo-mechanical

loads. Although FGMs are highly heterogeneous, it will
be useful to idealize them as continua with properties
changing smoothly with respect to the spatial coordinates.
This will enable obtaining closed-form solutions to some
fundamental solid mechanics problems, and also will help
in developing finite element models of the structures made
of FGMs. Aboudi et al. [2–4], developed a higher order
micromechanical theory for FGMs (HOTFGM) that
explicitly couples the local and global effects. Later the
theory was extended to free-edge problems by Aboudi and
Pindera [5]. Pindera and Dunn [6] evaluated the higher
order theory by performing a detailed finite element ana-
lysis of the FGM. They found that the HOTFGM results
agreed well with the FE results. Marrey and Sankar [7,8]
studied the effects of stress gradients in textile composites
consisting of unit cells large compared to the thickness of
the composite. Their method results in direct computation
of plate stiffness coefficients from the micromechanical
models rather than using the homogeneous elastic con-
stants of the composite and plate thickness.
There are other approximations that can be used to

model the variation of properties in a FGM. One such
variation is the exponential variation, where the elastic
constants vary according to formulas of the type: cij ¼
c0ije

lz. Many researchers have found this functional form of
property variation to be convenient in solving elasticity
problems [1]. For example, Delale and Erdogan [9] derived
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the crack-tip stress fields for an inhomogeneous cracked
body with constant Poisson ratio and with a shear
modulus variation given by � ¼ �0e

�xþ�yð Þ.
Although elasticity equations can provide exact solu-

tions, they are limited to simple geometries, specific
boundary conditions, and special types of loadings.
Hence, it will be useful to develop a simple beam/plate
theories for structures made of FGMs. The validity of the
beam/plate theories can be checked by comparing with the
elasticity solutions. In this paper we analyze a FGM beam
subjected to sinusoidal transverse loading. The plane
elasticity equations are solved exactly to obtain displace-
ment and stress fields. A beam theory similar to the
Euler–Bernoulli beam theory is developed, and the beam
theory results are compared with elasticity solutions. It is
found that beam theory results agree quite well with elas-
ticity solution for beams with large length to thickness
ratio subjected to more uniform loading characterized by
longer wavelength of the sinusoidal loading.

2. Elasticity analysis

Consider the FGM beam shown in Fig. 1. Note that
the x-axis is along the bottom of the beam, not in the
mid-plane. The length of the beam is L and thickness is
h. The beam is assumed to be in a state of plane strain
normal to the xz plane, and the width in the y-direction
is taken as unity. The boundary conditions are similar
to that of a simply supported beam, but the exact
boundary conditions will become apparent later. The
bottom surface of the beam (z=0) is subjected to nor-
mal tractions such that:

�zzðx; 0Þ ¼ �pzðxÞ ¼ �pnsin�x ð1Þ

where

� ¼
n�

L
; n ¼ 1; 3; 5; . . . ð2Þ

The upper surface, z=h, is completely free of trac-
tions, and the lower surface is free of shear tractions.

Since n is assumed to be odd, the loading is symmetric
about the center of the beam. The loading given by Eq.
(1) is of practical significance because any arbitrary
normal loading can be expressed as a Fourier series
involving terms of the type pn sinxx.
The differential equations of equilibrium are:

@�xx
@x

þ
@	xz
@z

¼ 0

@	xz
@x

þ
@�zz
@z

¼ 0 ð3Þ

Assuming that the material is orthotropic at every point
and also that the principal material directions coincide
with the x and z axes, the constitutive relations are:

�xx

�zz

	xz

8><
>:

9>=
>; ¼

c11 c13 0

c13 c33 0

0 0 c55

2
64

3
75

"xx
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>:
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>;

or

�f g ¼ cðzÞ½ 	 "f g ð4Þ

As mentioned in the Introduction we assume that all
elastic stiffness coefficients vary exponentially in the z
direction. Then the elasticity matrix can be written as:

½cðzÞ	 ¼ elz
c0
11

c0
13

0

c0
13

c0
33

0

0 0 c0
55

2
4

3
5 ð5Þ

where c0ij ¼ cijð0Þ. Substituting from Eq. (4) into (3), and
using strain–displacement relations ð"xx ¼ @u

@x ; etc:Þ we
obtain the following two equations in u(x,z) and w(x,z):

@

@x
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þ c13

@w
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� �
þ
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� �
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@
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@x

� �
þ

@

@z
c13

@u

@x
þ c33

@w

@z

� �
¼ 0 ð6Þ

We will assume solutions of the form:

uðx; zÞ ¼ UðzÞcos�x

wðx; zÞ ¼ WðzÞsin�x ð7Þ

From the forms of the displacements one can note
that the boundary conditions at the left and right end
faces of the beam are given by:

wð0; zÞ ¼ wðL; zÞ ¼ 0

�xxð0; zÞ ¼ �xxðL; zÞ ¼ 0 ð8Þ

which is typical of simply supported beams. Substituting
from Eqs. (5) and (7) into Eq. (6) we obtain a pair of
ordinary differential equations for U(z) and W(z):

Fig. 1. A FG beam subjected to symmetric transverse loading. Note

that the x axis is along the bottom surface of the beam.
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�c011�
2Uþc013�W

0þc055U
00þc055lU

0þc055�W
0þc055l�W ¼ 0

� c055�U
0 � c055�

2W� c013�U
0 � c013l�Uþ c033W

00

þ c033lW
0 ¼ 0 ð9Þ

where ð:Þ0 � dð:Þ
dz .

In order to simplify the calculations we will assume
that the FGM is isotropic at every point. Further we will
assume that the Poisson’s ratio is a constant through the
thickness. Then the variation of Young’s modulus is
given by EðzÞ ¼ E0e

lz. The elasticity matrix [c] is related
to the Young’s modulus and Poisson’s ratio by:

½c	 ¼
E

ð1þ 
Þð1� 2
Þ

1� 
 
 0

 1� 
 0

0 0
1� 2


2

2
64

3
75 ð10Þ

The solution of Eqs. (9) can be derived as:

UðzÞ ¼
X4
i¼1

aie
�iz

WðzÞ ¼
X4
i¼1

bie
�iz ð11Þ

where ai and bi are arbitrary constants to be determined
from the traction boundary conditions on the top and
bottom surfaces [Eq. (1)], and ai are the roots of the
characteristic equation for �:

A11 A12

A21 A22

����
���� ¼ 0 ð12aÞ

where

A11 ¼
1� 2


2

� �
�2 þ

1� 2


2

� �
l�� ð1� 
Þ�2
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��

2
þ

1� 2
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� �
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��

2
� 
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Þl��
1� 2


2

� �
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The arbitrary constants ai and bi are related by:

ri ¼
bi
ai

¼ �
ð1� 2
Þ�iðlþ �iÞ � 2ð1� 
Þ�2

��þ ð1� 2
Þl�
ð13Þ

The four arbitrary constants ai can be found from the
traction boundary conditions on the top and bottom
surface of the beam:

	xzðx; 0Þ ¼ G0
@u

@z
þ
@w

@x

� �
jz¼0 ¼ 0

	xzðx; hÞ ¼ Gh
@u

@z
þ
@w

@x

� �
jz¼h ¼ 0

�zzðx; 0Þ ¼ c011
@u

@x
jz¼0 þ c033

@w

@z
jz¼0 ¼ �pnsin�x

�zzðx; hÞ ¼ ch11
@u

@x
jz¼h þ ch33

@w

@z
jz¼h ¼ 0 ð14Þ

where G is the shear modulus, G0=G(0), Gh=G(h) and
chij ¼ cijðhÞ. Substituting for u and w from Eq. (7), we
obtain the BCs in terms of U and W:

U0ð0Þ þ �Wð0Þ ¼ 0

U0ðhÞ þ �WðhÞ ¼ 0

� c011�Uð0Þ þ c033W
0ð0Þ ¼ �pn

� ch11�UðhÞ þ ch33W
0ðhÞ ¼ 0

ð15Þ

Substituting for U and W from Eqs. (11) into (15), we
obtain four equations for ai:

X4
i¼1

�i þ �rið Þai ¼ 0

X4
i¼1

e�ih �i þ �rið Þai ¼ 0

X4
i¼1

�c011� þ c033ri�i

� �
ai ¼ �pn

X4
i¼1

e�ih �ch11� þ c033ri�i

� �
ai ¼ 0 ð16Þ

Solving for ai we obtain the complete solution for
U(z) and W(z), and hence for u(x,z) and w(x,z). The
stresses at any point in the beam can be evaluated in a
straight forward manner.

3. Euler–Bernoulli beam theory for FGM beams

We will follow the Euler–Bernoulli beam theory
assumption that plane sections normal to the beam axis
(x axis) remain plane and normal after deformation.
Further, we will assume that there is no thickness change,
i.e. w displacements are independent of z. Then the dis-
placements can be written as:

wðx; zÞ ¼ wbðxÞ

ubðx; zÞ ¼ u0ðxÞ � z
dwb

dx
ð17Þ

where the subscript b in Eq. (17) denotes beam theory
displacements. It may be noted that u0 denotes the dis-
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placements of points on the bottom surface of the beam,
and not points in the beam mid-plane. We assume that
the normal stresses �zz are negligible. Then the stress
strain relations take the simple form:

�x ¼ E� ðzÞ"xx; 	xz ¼ GðzÞ�xz ð18Þ

where the plane strain Young’s modulus is given by
E� ¼ E

1�
2
. It may also be noted that the relation E� ðzÞ ¼

E� 0e
lz holds good because v is constant. From Eq. (17)

expressions for axial strain and stress can be derived as:

"xx ¼
du0
dx

� z
d2wb

dx2
¼ "x0 þ z�

�xx ¼ E� "x ¼ E� "x0 þ zE�� ð19Þ

One can readily recognize the reference plane strain
"x0 and the beam curvature � in Eq. (19). The axial force
and bending moment resultants, N and M, are defined
as in the Euler–Bernoulli beam theory:

ðN;MÞ ¼

ðh
0

�xxð1; zÞdz ð20Þ

Note that the limits of integration in the definition of
force and moment resultants in Eq. (20) are 0 and h.
Substituting for �xx from Eq. (19) into Eq. (20), a rela-
tion between the force and moment resultants and the
beam deformations can be derived as follows:

N
M

� �
¼

A B
B D

� �
"x0
�

� �
ð21Þ

The definition of beam stiffness coefficients A, B and
D are:

A;B;Dð Þ ¼

ðh
0

E� ð1; z; z2Þdz ð22Þ

Explicit expressions for the beam stiffness coefficients
can be derived using E� ðzÞ ¼ E� 0e

lz:

A ¼
E� h � E� 0

l

B ¼
hE� h � A

l

D ¼
h2E� h � 2B

l
E� 0 ¼ E� ð0Þ andE� h ¼ E� ðhÞ ð23Þ

The inverse relations corresponding to that in Eq. (21) is:

"x0
�

� �
¼

A B
B D

� ��1
N
M

� �
¼

A
 B


B
 D


� �
N
M

� �
ð24Þ

Since the axial force resultant N � 0, the expressions
for the deformations take the form:

"x0 ¼ B
M; � ¼ D
M ð25Þ

Substituting in Eqs. (19) the axial stresses in a FGM
beam take the form:

�xxðx; zÞ ¼ D
MðxÞE� ðzÞ
B


D

þ z

� �
ð26Þ

From Eq. (26) one can recognize that the neutral axis
is at z ¼ zNA ¼ � B


D
. The transverse shear stresses 	xz
can be recovered by integrating the first of the two
equilibrium Eqs. (3). Noting that 	xzðx; 0Þ ¼ 0, an
expression for the shear stresses at a distance z* can be
derived as:

	xzðx; z

Þ ¼ �

ðz

0

@�xx
@x

dz ð27Þ

Substituting for �xx from Eq. (26) into (27) we obtain:

	xzðx; z

Þ ¼ �Vz

ðz

0

B
E� þD
E� z
� �

dz ð28Þ

where the shear force resultant Vz ¼
dM
dx . Substituting

E� ¼ E� 0e
lz in Eq. (28), the transverse shear stresses in a

FGM beam take the form:

	xz x; zð Þ ¼ �Vz
B


l
E� � E� 0

� �
þ
D


l2
ðlz� 1ÞE� þ E� 0

� �� �

ð29Þ

The shear force resultant is related to the applied
transverse loading by pz ¼ � dVz

dx . The maximum shear
stress at any cross section, according to beam theory,
occurs at the neutral axis, and can be obtained by sub-
stituting z ¼ zNA ¼ �B


D
 in Eq. (29).

4. Results and discussion

The results can be divided into two categories. First,
we would like to know under what conditions the simple
beam theory is valid for FG beams. Second, it would be
interesting to study the differences between a homo-
geneous beam and FG beams. From the elasticity ana-
lysis the following observations could be made. The
length dimension could be normalized with respect to
the thickness of the beam h. The solution for displace-
ments and stresses are periodic and of the form

fðyÞ
sin�x
cos�x

� �
, and the normalized values of displace-

ments and stresses, e.g. f(y), are independent of x. Fur-
ther, from Eqs. (12) and (16) one can note that for a
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given l the solution to the elasticity problem depends
only on the non-dimensional parameter �h ¼ n�h

L . Small
values of �h represent long, slender beams with more
uniform loading given by small values of n. Larger
values of �h correspond to short, stubby beams and/or
loading of smaller wavelength, typical of sharp contact
loads. In the numerical calculations E0 was assumed to
be 1 GPa. The non-dimensional results presented are

independent of the actual values of E, but depend on the
ratio Eh/E0 or the factor, l. The Poisson’s ratio was
taken as 0.25.
The axial displacements, u(x,z), of points in a typical

cross section are plotted in Figs. 2–4. The displacements
are normalized by dividing by the u displacements on
the top surface (unloaded) of the beam. This ratio
depends only on the z coordinate and is independent of
the x coordinate. Figs. 2 and 3 present the results for
FG beams with Eh ¼ 10E0; ðl > 0Þ and Eh ¼ 0:1E0,
ðl < 0Þ, respectively. Fig. 4 is for a homogeneous beam.
From these figures it can be noted that the beam theory

Fig. 2. Normalized axial displacements u through the thickness of the

beam for various values of xh (Eh=10E0). The displacements are nor-

malized by dividing by the u displacements on the top surface (unloa-

ded) of the beam. This ratio depends only on the z coordinate and is

independent of the x coordinate.

Fig. 3. Normalized axial displacements u through the thickness of the

beam for various values of xh (Eh=0.1E0).

Fig. 4. Normalized axial displacements u through the thickness of

homogeneous beams for various values of xh.

Fig. 5. Normalized axial stresses sxx through the thickness of a FGM

beam for various values of xh and Eh=10E0. The stresses are normal-

ized by dividing by the corresponding stress on the top surface at the

same cross-section. This ratio depends only on the z coordinate and is

independent of the x coordinate.
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assumption — plane sections remain plane — is valid for
�h41. For �h > 1 there is significant warping of the cross
section near the loading side (bottom side of the beam).
The warping is high in Case 1 (Eh ¼ 10E0; l > 0) and
less in Case 2 (Eh ¼ 0:1E0; l < 0). In the case of homo-

geneous beam (Fig. 4) the amount of warping is some-
what between Cases 1 and 2. It can be noted that the
softer side of the beam is loaded in Case 1 and the
harder side in Case 2.
The normal stresses �xx are plotted in Figs. 5–7. The

stresses are normalized by dividing by the correspond-
ing stress on the top surface at the same cross section.
This ratio depends only on the z coordinate and is
independent of the x coordinate. As before the beam

Fig. 6. Normalized axial stresses sxx through the thickness of a FGM

beam for various values of xh and Eh=0.1E0. The stresses are nor-

malized by dividing by the corresponding stress on the top surface at

the same cross section. This ratio depends only on the z coordinate

and is independent of the x coordinate.

Fig. 7. Normalized axial stresses sxx through the thickness of a

homogeneous beam for various values of xh.

Fig. 8. Transverse shear stresses through the thickness of a FG beam

for various values of xh and Eh=10E0. The shear stresses are normal-

ized with respect to the average shear stress at the same cross-section.

This ratio depends only on the z coordinate and is independent of the

x coordinate.

Fig. 9. Transverse shear stresses through the thickness of a FG beam

for various values of xh (Eh=E0/10).
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theory stresses agree with elasticity solution up to
�h ¼ 1. Stress concentration occurs on the loading face,
and it is higher for Case 2 (Fig. 6) in which the loads are
applied to the higher Young’s modulus side. As seen
from Fig. 5, applying load on the softer face of the
beam has a stress mitigating effect, and in fact the stress
concentration is less than that in the homogeneous
beam (Fig. 7).
Through-thickness variation transverse shear stresses

are presented in Figs. 8–10. For �h ¼ 1 the shear tress
distribution is close to that predicted by the beam theory,

and they resemble the typical parabolic profile. In FG
beams, for �h ¼ 1 (Figs. 8 and 9) the maximum shear
stress is slightly greater than 1.5� average shear stress,
and it occurs close to the neutral axis (z/h= 0.68 for
Case 1 and z/h=0.32 for Case 2). For �h > 1 the shear
stress distribution depends on the FG variable l. For
l>0 (Case 1, Fig. 8), the shear stress concentration first
decreases with increasing �h. In fact for �h ¼ 2 the shear
stress distribution is flat, i.e. more uniform through the
thickness, reducing the non-dimensional value of the
maximum shear stress to about 1.3. For �h ¼ 3 the
shear stress concentration factor is about 1.8.
The situation is quite opposite when l < 0 (Case 2,

Fig. 9). The maximum shear stress is about 2.7 for
�h ¼ 3. The results for homogeneous beams (l ¼ 0,
Fig. 10), do not reveal any surprises. The maximum
non-dimensional shear stress is about 2.2 for �h ¼ 3.
The transverse deflections of the beam are presented

in Figs. 11 and 12. The deflections are normalized with
respect to the maximum beam theory deflection, and
plotted for one-half wavelength of the loading. Unlike
the solution for stresses, the elasticity solution for w(x,z)
deviates from beam theory deflections for smaller values
of �h. The beam theory was found to be valid only up to
�h � 0:5. For �h ¼ 1 (Fig. 11) the deflections do not
vary very much through the thickness, but they are 15%
greater than beam theory deflections. As seen from
Fig. 12 for �h ¼ 2 the beam undergoes tremendous
through-thickness compression. That is, the deflections
on the loading face (z=0) are greater than that on the
free surface (z=h). The maximum deflection on the
loading face is about 2.5 times that of maximum beam
theory deflection.Fig. 10. Transverse shear stresses through the thickness of a homo-

geneous beam for various values of xh.

Fig. 11. Transverse displacements w(x,z) for xh=1 in a FG beam with

Eh=10E0. The displacements are normalized with respect to the max-

imum beam theory deflection.

Fig. 12. Transverse displacements w(x,z) for xh=2 in a FG beam with

Eh=10E0. The displacements are normalized with respect to the max-

imum beam theory deflection.
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5. Conclusions

An elasticity solution is obtained for simply sup-
ported functionally gradient beams subjected to sinu-
soidal transverse loading. The Poisson ratio is assumed
to be a constant, and the Young’s modulus is assumed
to vary in an exponential fashion through the thickness.
A simple Euler–Bernoulli type beam theory is also
developed based on the assumption that plane sections
remain plane. The stresses and displacements are found
to depend on a non-dimensional parameter, �h ¼ n�h

L . It
is found that the FG beam theory is valid for long,
slender beams with slowly varying transverse loading
(�h < 1). For �h > 1 stress concentrations occur, which
depends on whether the softer or harder face of the FG
beam is loaded. When the softer side is loaded, the stress
concentrations are less than that in a homogeneous beam,
and the reverse is true when the harder side is loaded.
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