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ABSTRACT: The problem of predicting crack propagation in anisotropic solids,
which is a subject of considerable practical importance, is examined by carrying out
the analysis on anisotropic solids with an inclined crack subject to uniaxial loading.
By deriving the subsequent term of the series expansion for crack tip stresses in
anisotropic materials, its effects on the hoop stresses near the crack tip and predicted
crack propagation direction are evaluated. In order to determine the direction of
crack extension, the normal stress ratio theory is employed. The theoretical analysis
is performed for a wide range of the anisotropic material properties. Based on this
failure criterion, it is shown that the second order term in the series expansion is
essential for accurate determination of crack growth direction in anisotropic solids.

KEY WORDS: crack extension angle, anisotropic solids, uniaxial load, second
order stress term, mixed mode crack.

INTRODUCTION

C
OMPOSITE MATERIALS HAVE been increasingly used in aerospace and automotive
applications. The use of composite materials is very attractive because of their

outstanding strength, stiffness, and light-weight properties. The increasing use of
advanced composite materials in structural applications has considerably renewed the
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interest in solutions to problems in anisotropic elasticity. Problems which have received
much attention in this regard include those with cracks, and concepts of fracture
mechanics, which have been used for analyzing cracked isotropic bodies, have been
extended to treat material anisotropy.

The failure analysis and strength evaluation of composite materials with a notch or a
crack is a critical issue in the design and assessment of composite structures. Failure
analysis of structural components within the framework of fracture mechanics is based on
the initiation and propagation of initial defects such as notch and crack. In designing
against fracture in anisotropic composite materials, the prediction of crack initiation and
growth direction are of great importance. Fracture problems of anisotropic materials are
considerably more complicated than the isotropic case. The direction and load level at
which a crack propagates is a function of the stress intensity factor, the crack orientation,
the material stiffness properties, and the material strength properties.

The general solution to the problem of cracks in anisotropic materials was obtained by
Sih and Liebowitz [1,2]. They found that the stresses at the crack tip have an inverse
square root singularity as in classical crack embedded into homogeneous solid. Therefore,
it is generally accepted that the elastic stresses and displacements near a crack tip in
anisotropic materials can be adequately approximated with sufficient accuracy by the
singular expression. In many cases, however subsequent terms of the series expansion are
quantitatively significant, and so the evaluation of such terms and their effect on the
predicted crack growth direction in anisotropic materials should be considered.

Recently Yang and Yuan [3,4] investigated the effects of higher-order terms in the
expression for crack-tip stress field in anisotropic materials. They derived the second and
third terms of the crack-tip stress field as additional parameters in characterizing the
behavior of the crack. In the previous works of the present authors [5,6], the influence of
subsequent terms on predicting Mode I crack propagation angle in anisotropic material
was investigated.

In this paper we extend the analysis employed in our previous works to treat the
uniaxially loaded anisotropic plate with an inclined crack. We give the correct form of the
second-order stress term in the asymptotic expansion for the inclined crack in anisotropic
materials. An infinite sheet geometry is used in order to examine the fundamental problem
of mixed mode fracture under uniaxial tensile load. The purpose of this research is to show
that the direction of crack initiation in plane cracked anisotropic bodies may be
significantly affected by the second term. It was shown that although the second term is
independent of radial distance, the coefficient of that term depends on the anisotropic
material properties, the inclined crack angle, and the applied load.

PLANE ANISOTROPIC ELASTICITY

The constitutive relations for a homogeneous anisotropic elastic material in plane stress
can be written as

"xx ¼ a11�xx þ a12�yy þ a16�xy

"yy ¼ a12�xx þ a22�yy þ a26�xy

�xy ¼ a16�xx þ a26�yy þ a66�xy

ð1Þ
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where ð"xx, "yy, �xyÞ and ð�xx, �yy, �xyÞ are strains and stresses, respectively, and constants
aijði, j ¼ 1, 2, 6Þ are the elastic compliances of the material. These compliances may be
given in terms of engineering material constants.

By introducing Airy’s stress function Uðx, yÞ, Lekhnitskii [7] has shown that the
governing equation for a two-dimensional problem of anisotropic elasticity is

a22
@4U

@x4
� 2a26

@4U

@x3@y
þ ð2a12 þ a66Þ

@4U

@x2@y2
� 2a16

@4U

@x@y3
þ a11

@4U

@y4
¼ 0 ð2Þ

The fundamental solution of Equation (2) for anisotropic 2-D elastic body can be
written in terms of complex variables as

Uðx, yÞ ¼ 2Re½U1ðz1Þ þU2ðz2Þ� ð3Þ

where Re denotes the real part of a complex function, U1ðz1Þ and U2ðz2Þ are stress function
of complex variable zj ¼ xþ sjyð j ¼ 1, 2Þ and sjð j ¼ 1, 2Þ are the roots of the following
characteristic equation:

a11s
4 � 2a16s

3 þ ð2a12 þ a66Þs
2 � 2a26sþ a22 ¼ 0 ð4Þ

Introduce �ðz1Þ ¼ dU1ðz1Þ=dz1 and  ðz2Þ ¼ dU2ðz2Þ=dz2. Then by inserting these equa-
tions into the relation between stress function and the stresses, the general equations for
the stress components in terms of two functions �ðz1Þ and  ðz2Þ, can be expressed as

�xx ¼ 2Re½s21�
0ðz1Þ þ s22 

0ðz2Þ�

�yy ¼ 2Re½�0ðz1Þ þ  
0ðz2Þ�

�xy ¼ �2Re½s1�
0ðz1Þ þ s2 

0ðz2Þ�

ð5Þ

where �0ðz1Þ and  0ðz2Þ denote differentiation with the respect complex variables z1
and z2. Substituting the values �xx, �yy and �xy from Equation (5) into Equation (1), and
by integration, the general equations for the displacements uðx, yÞ and vðx, yÞ can be
expressed as

uðx, yÞ ¼ 2Re½ p1�ðz1Þ þ p2 ðz2Þ�

vðx, yÞ ¼ 2Re½q1�ðz1Þ þ q2 ðz2Þ�
ð6Þ

To simplify the writing of these equations, the following abbreviations were used

p1 ¼ a11s
2
1 þ a12 � a16s1, p2 ¼ a11s

2
2 þ a12 � a16s2

q1 ¼
a12s

2
1 þ a22 � a26s1

s1
, q2 ¼

a12s
2
2 þ a22 � a26s2

s2

ð7Þ

In orthotropic materials of elastic symmetry, a16 ¼ a26 ¼ 0 and the characteristic equation
of (Equation (4)) can be simplified as

a11s
4 þ ð2a12 þ a66Þs

2 þ a22 ¼ 0 ð8Þ
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It can be shown that for anisotropic materials, Equation (8) has only complex roots, and
they are distinct. In addition, because the coefficients of Equation (8) are all real constants,
the roots are in complex conjugate pairs. The four roots are denoted by

s1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	0 � 
0

2

r
þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	0 þ 
0

2

r
¼ 	1 þ i
1

s2 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	0 � 
0

2

r
þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	0 þ 
0

2

r
¼ 	2 þ i
2

s3 ¼ �ss1, s4 ¼ �ss2

ð9Þ

where 	0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22=a11

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E11=E22

p
and 
0 ¼ a66=2þ a12ð Þ=a11 ¼ E11=2�12 � �12:

CRACK TIP STRESS FIELDS INCLUDING SUBSEQUENT TERM IN

ANISOTROPIC MATERIAL

In order to derive the analytic functions, � and  for an inclined crack in an infinite
anisotropic plate under uniaxial loading, we consider an elliptical hole in an infinite plate
under tension. Savin [8] has outlined analytic functions for an elliptical hole in a plate
which is subjected to uniaxial stress at an angle 	 with x-axis. By substituting zero for the
minor axis of the elliptical hole, i.e., b¼ 0 and simplifying, the analytic functions for an
inclined crack under biaxial loading shown in Figure 1 can be expressed as

�ðz1Þ ¼
s2�

1 sin2 	þ �1 sin 	 cos	

2ðs1 � s2Þ
z1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 � a2

q� �
þ B
z1

 ðz2Þ ¼ �
s1�

1 sin2 	þ �1 sin 	 cos	

2ðs1 � s2Þ
z2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z22 � a2

q� �
þ ðB 0
 þ iC 0
Þz2

ð10Þ

where B
,B 0
 and C 0
 are real constants computed from material properties and external
loading, and are defined as

B
 ¼ �1
cos2 	þ ð	22 þ 


3
2Þ sin

2 	þ 	2 sin 2	

2½ð	2 � 	1Þ
2
þ ð
22 � 


2
1Þ�

B 0
 ¼ �1
½ð	21 � 


2
1Þ � 2	1	2� sin

2 	� cos2 	� 	2 sin 2	

2½ð	2 � 	1Þ
2
þ ð
22 � 


2
1Þ�

C 0
 ¼ �1
ð	1 � 	2Þ cos

2 	þ ½	2ð	
2
1 � 


2
1Þ � 	1ð	

2
2 � 


2
2Þ� sin

2 	

2
2½ð	2 � 	1Þ
2
þ ð
22 � 


2
1Þ�

(

þ
½ð	21 � 


2
1Þ � ð	22 � 


2
2Þ� sin 	 cos	

2
2½ð	2 � 	1Þ
2
þ ð
22 � 


2
1Þ�

)
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The first derivatives of functions �ðz1Þ and  ðz2Þ are given as

�0ðz1Þ ¼
s2�

1 sin2 	þ �1 sin 	 cos	

2ðs1 � s2Þ
1�

z1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 � a2

q
2
64

3
75þ B
z1

 0ðz2Þ ¼ �
s1�

1 sin2 	þ �1 sin 	 cos	

2ðs1 � s2Þ
1�

z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z22 � a2

q
2
64

3
75þ ðB 0
 þ iC 0
Þz2

ð11Þ

Calculation may be facilitated by the use of coordinate �j originating at crack tip.

zj � a ¼ �j ¼ rðcos � þ sj sin �Þ, zj ¼ xþ sjy ð j ¼ 1, 2Þ ð12Þ

Thus, �0ðz1Þ and  
0ðz2Þ are given in terms of complex variable �j ð j ¼ 1, 2Þ as

�0ð�1Þ ¼
s2�

1 sin2 	þ �1 sin 	 cos	

2ðs1 � s2Þ
1�

ð�1 þ aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�21 þ 2a�1Þ

q
2
64

3
75þ B


 0ð�2Þ ¼ �
s1�

1 sin2 	þ �1 sin 	 cos	

2ðs1 � s2Þ
1�

ð�2 þ aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�22 þ 2a�2Þ

q
2
64

3
75þ ðB 0
 þ iC 0
Þ

ð13Þ

Figure 1. Inclined crack in an anisotropic plate under uniaxial load.
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where 0 < j�jj ¼ r � 1, ð j ¼ 1, 2Þ. Expanding the expression inside the bracket on the
right side of Equation (13) as a power series, the equation can be written as

�0ð�1Þ
�
¼ �

�1s2 sin
2 	þ �1 sin 	 cos	

2ðs1 � s2Þ

1ffiffiffi
2

p
�1
a

� ��1=2

þ
3

4

�1
a

� �1=2

�
5

32

�1
a

� �3=2

þ � � �

" #( )

þ B
 þ
�1s2 sin

2 	þ �1 sin 	 cos	

2ðs1 � s2Þ

� �
�1
a

� �0

 0ð�2Þg ¼
�1s1 sin

2 	þ �1 sin 	 cos	

2ðs1 � s2Þ

1ffiffiffi
2

p
�2
a

� ��1=2

þ
3

4

�2
a

� �1=2

�
5

32

�2
a

� �3=2

þ � � �

" #( )

þ B 0
 þ iC 0
 þ
�1s1 sin

2 	þ �1 sin 	 cos	

2ðs1 � s2Þ

� �
�2
a

� �0

ð14Þ

Ignoring the higher order terms of �1 and �2 except the terms containing ��1=2
j and �0j

in Equation (14), the functions of �0ðz1Þ and  
0ðz2Þ can be simplified as

�0ð�1Þ ffi �
�1s2 sin

2 	þ �1 sin 	 cos	

2
ffiffiffi
2

p
ðs1 � s2Þ

�1
a

� ��1=2
" #

þ B
 þ
�1s2 sin

2 	þ �1 sin 	 cos	

2ðs1 � s2Þ

� �

 0ð�2Þ ffi
�1s1 sin

2	þ�1 sin	cos	

2
ffiffiffi
2

p
ðs1� s2Þ

�2
a

� ��1=2
" #

þ B 0 þ iC 0
 �
�1s1 sin

2	þ�1 sin	cos	

2ðs1� s2Þ

� �

ð15Þ

Thus, by substituting Equation (15) into Equation (5), the expressions for the near crack
tip stresses including the second-order term can be obtained as

�xx ¼
KIffiffiffiffiffiffiffiffi
2�r

p Re
s1s2

ðs1 � s2Þ

s2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos � þ s2 sin �

p �
s1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos � þ s1 sin �
p

� �� �

þ
KIIffiffiffiffiffiffiffiffi
2�r

p Re
1

ðs1 � s2Þ

s22ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos � þ s2 sin �

p �
s21ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos � þ s1 sin �
p

� �� �
þ �1Re½ðcos	þ s1 sin 	Þðcos	þ s2 sin 	Þ�

�yy ¼
KIffiffiffiffiffiffiffiffi
2�r

p Re
1

ðs1 � s2Þ

s1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos � þ s2 sin �

p �
s2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos � þ s1 sin �
p

� �� �

þ
KIIffiffiffiffiffiffiffiffi
2�r

p Re
1

ðs1 � s2Þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos � þ s2 sin �

p �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos � þ s1 sin �
p

� �� �

�xy ¼
KIffiffiffiffiffiffiffiffi
2�r

p Re
s1s2

ðs1 � s2Þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos � þ s1 sin �

p �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos � þ s2 sin �
p

� �� �

þ
KIIffiffiffiffiffiffiffiffi
2�r

p Re
1

ðs1 � s2Þ

s1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos � þ s1 sin �

p �
s2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos � þ s2 sin �
p

� �� �

ð16Þ

where KI ¼ �1
ffiffiffiffiffiffi
�a

p
1� cos 2	ð Þ=2 and KII ¼ ð�1

ffiffiffiffiffiffi
�a

p
Þ sin 2	=2. It can be seen that the

second-order term in stresses appears only the in the �xx stress component.
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CRACK EXTENSION DIRECTION IN ANISOTROPIC MATERIALS

We employ the normal stress ratio theory to determine values for the direction of initial
crack extension. This criterion, proposed by Buczek and Herakovich [9], assumes that
given the hoop stress ��� at some small distance r0 from the crack tip and the anisotropic
tensile strength T�� normal to the plane oriented at an angle � to the fiber axis, the crack
will grow along the plane on which the ratio R0ðr0, �Þ, as defined below, is a maximum.
Thus, the condition for cracking direction can be expressed as

R0ðr0, �Þ ¼
���ðr0, �Þ

T��
,

@R0

@�

� �
�0

¼ 0,
@2R0

@�2

� �
�0

< 0, ð17Þ

where T�� is dependent on the orientation of the angle �.
We follow the method of Buczek and Herakovich [9] for defining T��, which must satisfy

the following conditions: (1) for an isotropic material, T�� must not depend on �; (2) for
crack growth parallel to material fibers, T�� must equal the transverse tensile strength, YT ;
(3) for crack growth perpendicular to the fibers, T�� must equal the longitudinal tensile
strength, XT . Then T�� can be expressed as:

T�� ¼ XT sin2 � þ YT cos2 � ð18Þ

The hoop stress ��� in the polar coordinate system is given by

��� ¼ �xx sin
2 � þ �yy cos

2 � � 2�xy sin � cos � ð19Þ

Substituting the cartesian stress components of Equation (16) into the above expression,
the hoop stress including the second order term can be obtained as

��� ¼
KIffiffiffiffiffiffiffiffi
2�r

p Re
1

s1 � s2
ðs1’

3=2
2 � s2’

3=2
1 Þ

� �
þ

KIIffiffiffiffiffiffiffiffi
2�r

p Re
1

s1 � s2
ð’3=22 � ’3=21 Þ

� �

þ �1Re½ðcos	þ s1 sin 	Þðcos	þ s2 sin 	Þ� sin
2 � ð20Þ

where ’j ¼ cos � þ sj sin � ð j ¼ 1, 2Þ. Thus, substituting the hoop stress of Equation (20)
and the anisotropic tensile strength of Equation (18) into Equation (17), the normal stress
ratio can be obtained as

R0 ¼

KIffiffiffiffiffiffiffiffiffiffi
2�r0

p Re
1

s1 � s2
ðs1’

3=2
2 � s2’

3=2
1 Þ

� �
þ

KIIffiffiffiffiffiffiffiffiffiffi
2�r0

p Re
1

s1 � s2
ð’3=22 � ’3=21 Þ

� �
þ �1Re½ðcos	þ s1 sin 	Þðcos	þ s2 sin 	Þ� sin

2 �

XT sin2 � þ ðYT=XT Þ cos2 �
� � ð21Þ

RESULTS AND DISCUSSION

In order to investigate the effect of second-order stress term, we analyze the distribution
of hoop stress at the crack tip and predict the initial crack extension angle for an uniaxially
loaded sheet with an inclined crack as shown in Figure 1. The direction of crack extension
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is measured from the direction parallel to the x-axis passing through the point of crack
initiation. It is assumed that the crack is aligned with direction x, which is parallel to the
fiber orientation. As noted previously, the direction of crack extension is determined on
the basis of maximum value of the normal stress ratio, R0: We chose 0:01 � ro=a � 0:05.
The reason is as follows. Eftis and Subramonian [10] compared analytical results for
stresses with experimental data, and found that r0=a ¼ 0:01 is a reasonable value for
isotropic materials under uniaxial load. Hence we used the same order of magnitude of
distance in the present analysis.

Distribution of Hoop Stress

The distribution of the hoop stress near the crack tip for the three cases of the crack
angle, 	 equal to 15, 45 and 75� is analyzed. Figures 2(a) through 2(c) show the variation
of normalized hoop stress, ���=�

1 with polar angle, � for the case of 	0 ¼ 1:2 and

0 ¼ 1:0. The curves were obtained with the ratio, r0=a ¼ 0:01.

Figure 2(a) shows the distribution of hoop stress for the case of 	 ¼ 15�. The solid line
in the figure is obtained using singular expression only for stresses near crack tip, and the
dotted line is obtained using second-order term of the series expansion for the stresses.
Both results agree well with each other for � ¼ 0, but they start to differ when � is non-
zero, so it can be concluded that if the direction of crack extension deviates from the crack
line, the effect of the second-order term may increase.

Figure 2(b) shows the hoop stress for the case of 	 ¼ 45�. The results obtained with
singular expression agree well with the one obtained with second-order term all around �.
There is little effect of the second-order term. It is therefore possible that the distribution
of the hoop stress near crack tip can be accurately expressed using the singular term only.

The results for the case of 	 ¼ 75� are given in Figure 2(c). In the figure, we note that the
difference between the two results starts to appear again, when crack angles are away from
45�. The results are similar to that of the case of 	 ¼ 15�.

Based on these results, it is clear that the distribution of the hoop stress becomes
dependent on crack angle. In particular, it is necessary to consider the subsequent term on
the series expansion for crack tip stresses when crack angle deviates from 45�, which is
changed by anisotropic material properties. Therefore, accurate calculation of hoop
stresses may be required to predict crack extension angle, which is based on crack tip
stresses.

Prediction of Crack Extension Direction

The direction of initial crack extension for various values of tensile strength ratio
XT=YT with 	0 ¼ 1:2 and 
0 ¼ 1:0 was calculated. Figure 3 shows the effects of tensile
strength ratio and second-order term on the direction of crack extension. The solid line in
the figure is obtained using singular expression only for stresses near crack tip, and the
dashed and dotted lines are obtained using second-order term for r0=a ¼ 0:01 and 0.05,
respectively. As shown in the figure, the tensile strength ratio produces markedly different
results for the predicted crack extension angle. For all crack inclination angles, the
direction of crack extension approaches zero as the tensile strength ratio increases, and
crack extension therefore occurs on the plane of the original crack. On the other hand, the
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Figure 2. (a) Variation of ��� for 	 ¼ 15�. (b) Variation of ��� for 	 ¼ 45�. (c) Variation of ��� for 	 ¼ 75�.

(c)

(a)

(b)
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effects of second term on the predicted direction of crack extension are particularly
significant as the tensile strength ratio becomes small. This graph further indicates that the
effects of the second term on the predicted direction of crack extension generally increase
as crack inclination angle 	 decreases. Further, the crack extension angle also varies with
the distance r0, where stresses are computed.

In order to represent the effect of the second order stress term clearly, we calculated
	� �0 curves for the case of 	0 ¼ 1:2, 
0 ¼ 1:0 and XT=YT ¼ 2:0. The results are shown in
Figure 4. The solid line in the figure is obtained using singular expression only for stresses

Figure 3. The effect of tensile strength ratio and second-order term on the direction of crack extension in
anisotropic solid.

Figure 4. Direction of crack extension for an inclined crack in anisotropic solid.
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near crack tip, and the dashed and dotted lines are obtained using second-order term for
r0=a ¼ 0:01 and 0.05, respectively. As shown in the figure, the inclusion of second term
produces markedly different results for the crack extension angle. The effect of second
term on the predicted direction of crack extension generally increases as crack inclination
angle decreases. In addition, there is a difference with the value of r0=a: This is the
situation wherein Mode II is very active. It is therefore important to choose appropriate
value of r0=a for the accurate prediction of crack extension angle in anisotropic materials.
The critical value of r0=a for a given material should be determined by performing
experiments. In particular, it is impossible to determine the crack extension angle in a
vertical crack with 	 ¼ 0 using singular expression only, because the maximum normal
stress ratio does not appear in this case, but the direction of crack extension using second-
order term was predicted to be 90�.

The predicted directions of initial crack extension are compared in Table 1 for various
tensile strength ratios and two r0=a ratios.

The direction of initial crack extension for the variation of tensile strength ratio, XT=YT

and elastic modulus ratio, 	0 and with 
0 ¼ 1:0 and r0=a ¼ 0:01 is calculated. Figure 5
shows the effects of tensile strength ratio and elastic modulus ratio on the direction of
crack extension. The solid, dashed and dotted lines in the figure are obtained for the case
of 	0 ¼ 1:2, 2:0 and 3.0, respectively. As shown in the figure, it can be seen that the
predicted propagation direction becomes more dependent on the elastic modulus ratio as
the tensile strength ratio has small values. For all crack inclination angles, the effect of
elastic modulus ratio on the predicted propagation direction decreases gradually as the
tensile strength ratio increases.

The comparison between predicted directions of initial crack extension for various
tensile strength ratios and three elastic modulus ratios is given in Table 2.

Figure 5. The effect of tensile strength ratio and elastic modulus ratio on the direction of crack extension in
anisotropic solid.
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CONCLUSION

We have demonstrated the importance of retaining the second-order term in the
series expansion of the local stresses for accurately predicting the crack propagation
direction in an anisotropic plate with an inclined crack subjected to a tensile load. The
analysis is based on the normal stress ratio, which is an empirical failure theory. The
evaluation of the subsequent term of the series representation for the stresses in
anisotropic materials and its effect on the predicted crack propagation direction are
considered. It is concluded that the hoop stress near the crack tip and the crack
extension angle are very much dependent on the tensile strength ratio and the second-
order stress term. Results of this study have indicated that the prediction of crack
extension using the subsequent term is important when the Mode II component in the
crack is very significant and when the ratio of tensile strengths in the fiber and
transverse directions deviates from unity.
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