
Crack-tip force method for computing energy release
rate in delaminated plates

Oung Park 1, Bhavani V. Sankar *

Department of Aerospace Engineering, Mechanics and Engineering Science, 231 Aerospace Building, P.O. Box 116250,

University of Florida, Gainesville, FL 32611-6250, USA

Abstract

A new method called the crack-tip force method (CTFM) is derived for computing the energy release rate in delaminated beams

and plates. In this method the delaminated plate is divided into two laminates on either side of the plane of delamination. The

interaction forces, called crack-tip forces, between the sub-laminates at the crack-tip are computed. The energy release rate is ex-

pressed as a quadratic function of the crack-tip forces and the plate compliance coefficients. The CTFM is compared to the virtual

crack closure technique (VCCT) as well as to a previously derived method called the strain energy density method using double

cantilevered beam specimens as examples. The CTFM is found to be very efficient as the crack-tip forces are part of the solution of

finite element analysis of delaminated plates, and they can be readily used to compute the point-wise energy release rate along the

delamination front. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Delamination is a prevalent failure mechanism in
laminated composite structures. Fracture mechanics
concepts have been successfully applied to predict the
loads at which the delamination will propagate and also
for predicting their stability. Energy release rate ðGÞ has
been found to be an useful measure in the analysis of
delaminations even in dynamic situations such as impact
[1,2]. The cost of computations dictate that beam/plate
theories be used in computing G. Thus there is a need for
efficient methods of computing G and also methods for
separation of fracture modes. Such beam theories have
been routinely used in the analysis of fracture specimens,
e.g., double cantilever beam, end notch flexure, etc. It
should be noted that beam theories work well only when
the delamination length is much longer than the thick-
ness of the cracked sub-laminates. The same could be
said of plate delaminations also. If the beam/plate the-
ories can estimate the total strain energy in the delami-
nated structure with reasonable accuracy, then the same

theory can be used to estimate G also. Such a condition
exist when the delamination size is much larger than the
plate thickness and plate theory solutions are valid at
points away from the crack front. As the cracked liga-
ments become shorter the beam solutions deviate from
the elastic fracture mechanics solutions and thus need
corrections. Such corrections have been proposed by
many researchers [3,4].
In the present study three methods of computing G in

beam/plate-like structures are discussed. A new method
called the crack-tip force method (CTFM) is derived
and compared to the standard virtual crack closure
technique (VCCT). In the context of a laminated plate,
the point-wise G along the delamination front is derived
from the crack-tip forces.

2. Energy release rate in laminated beams

In this section we derive three methods of computing
G in a laminated beam. The beam example is used to
minimize the complexity of derivations, but the methods
can be extended to delaminated plates easily. We use
shear deformable beam/plate theories throughout the
study. In the case of beams the width is assumed to be
unity.

Composite Structures 55 (2002) 429–434

www.elsevier.com/locate/compstruct

* Corresponding author. Tel.: +1-352-392-6749; fax: +1-352-392-

7303.

E-mail address: sankar@ufl.edu (B.V. Sankar).
1 Graduate Student, currently with Lexel Engineering, Flint, MI,

USA.

0263-8223/02/$ - see front matter � 2002 Elsevier Science Ltd. All rights reserved.

PII: S0263-8223 (01 )00170-2



2.1. Zero-volume J-Integral

Consider a portion of the delaminated beam as
shown in Fig. 1. We will assume that the delamination
length or crack length a � h, the thickness of the thicker
sub-laminate. We can use the J-Integral to compute the
energy release rate G, if the path of the integral ABCDEF
shown in Fig. 1 is away from the crack-tip and the beam
theory stresses along this path are reasonably accurate
compared to the exact elasticity solutions. The J-Inte-
gral is defined as [5]

J ¼
Z

C
ðU0nx � rijnjui;x Þds i ¼ 1; 2; j ¼ 1; 2; ð1Þ

where U0 is the strain energy density, rij and ui are, re-
spectively, the stress and displacement components, and
ni are the direction cosines of the outward normal along
the path C. We will use the indices i and j or x and z
interchangeably according to convenience. Further,
summation is performed over repeated indices. We note
that the J-Integral will vanish along the two horizontal
paths BC and DE, because along these two paths the
direction cosine nx is equal to zero, and also the tractions
given by rijnj vanish. Hence the Integral is given as the
sum of integrals along the three vertical paths: AB;CD
and EF . Next we will show that these vertical paths can
be moved very close to the crack-tip without losing any
accuracy in G.
It is well known that the J-Integral is path indepen-

dent because the same integral evaluated around a
closed contour vanishes. The vanishing of the J-Integral
around a close path under small strain assumptions is a
consequence of the following two differential equations
of equilibrium satisfied by the stress components [5]

orxx

ox
þ oszx

oz
¼ 0;

oszx
ox

þ orzz

oz
¼ 0:

ð2Þ

The stress field in a laminated beam given by the shear
deformable beam theory may not be accurate near the
crack-tip, however they satisfy the above differential
equations of equilibrium exactly. This is because the
transverse shear stresses sxz in the beam are computed
actually by substituting for rxx and then integrating the
first equilibrium equation. Thus the first of Eqs. (2) is
satisfied. According to beam theories the shear stresses

at a cross-section are proportional to the respective
shear force V, which is constant along each ligament of
the delaminated beam as well as in the intact beam
ahead of the crack-tip. Thus the shear stresses sxz are
independent of x in each of the sub-laminates, and hence
the first term in the second equilibrium equation is equal
to zero. Since beam theories assume that rzz are negli-
gible, the second term is also equal to zero, and thus the
second equilibrium equation is also satisfied. Then the J-
Integral evaluated around the closed path ABGHA (Fig.
1) using beam theory stresses is identically equal to zero.
Since the integral along the horizontal paths are zero, we
can show that JAB ¼ JHG. Similarly we can show JCD ¼
JKL and JEF ¼ JMN . Thus we have moved the three ver-
tical paths AB;CD and EF close to the crack-tip (HG;KL
andMN ) without affecting the value of G. The J-Integral
evaluated around the paths 2, 3 and 1 (HGKLMN ) close
to the crack-tip has been called the zero-volume J-In-
tegral or zero-area J-Integral [6,7] and G is given by

G ¼ J ð1Þ þ J ð2Þ þ J ð3Þ; ð3Þ

where the superscripts (1), (2) and (3), respectively, de-
note the paths MN ;HG and KL.

2.2. G from strain energy densities

Consider the J-Integral along path 1 in Fig. 1. Along
this path nx ¼ �1 and nz ¼ 0. Hence the Integral can be
written as

J ð1Þ ¼
Z N

M
ð�U0 þ rxxu;x þszxw;x Þds: ð4Þ

We will add and subtract s;zx u;z to the integrand in
Eq. (4)

J ð1Þ ¼
Z N

M
ð�U0 þ rxxu;x þszxðw;x þu;z ÞÞds

�
Z N

M
szxu;z ds: ð5Þ

The term u;z can be identified as the rotation of the beam
cross-section at the crack-tip, say, wt, which is common
to all the three paths 1, 2 and 3. Further the sum of
second and third terms in the first integral in Eq. (5) is
equal to 2U0. Hence Eq. (5) can be written as:

Fig. 1. Force and moment resultants in a delaminated beam.
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J ð1Þ ¼
Z N

M
U0 ds� wt

Z N

M
szx ds: ð6Þ

Eq. (6) can be further simplified as

J ð1Þ ¼ U ð1Þ
L � wtV1; ð7Þ

where U ð1Þ
L and V1 are, respectively, the strain energy per

unit length and shear force resultant at the cross-section
1 just behind the crack-tip. Similar results can be derived
for paths 2 and 3 as follows

J ð2Þ ¼ U ð2Þ
L � wtV2;

J ð3Þ ¼ �U ð3Þ
L þ wtV3:

ð8Þ

It should be noted that J ð3Þ in Eq. (8) switches signs
because of change in the sign of nx from �1 to þ1 for the
path 3. Adding all the three integrals and noting that the
shear force resultants must satisfy the equilibrium con-
dition V1 þ V2 ¼ V3, we find that

J ¼ J ð1Þ þ J ð2Þ þ J ð3Þ ¼ U ð1Þ
L þ U ð2Þ

L � U ð3Þ
L : ð9Þ

Thus the energy release rate G is the difference between
the strain energy densities just behind and just ahead of
the crack-tip. The strain energy density in the context of
beams refers to strain energy per unit length of the
beam, UL.

2.3. G in terms of crack-tip forces

Consider a very small segment of the beam of length
2Dx surrounding the crack-tip (Fig. 2). It will be con-
venient to shift the xz-coordinates such that the xy-
plane coincides with the plane of delamination. Further,
we will divide the laminate into four sub-laminates, two
behind and two ahead of the crack-tip as shown in Fig.
2. Let the force and moment resultants near the crack-
tip in any sub-laminate be represented by a column
matrix F such that F T ¼ bP M V c, where P ;M and V
are the axial force, bending moment and shear force
resultants, respectively. An underscore denotes a matrix
and a superscript T denotes transpose of the matrix. It
should be noted that the force and moment resultants
are resolved about the x-axis which coincides with the

delamination plane. Thus there is an offset between the
laminate mid-planes and the xy-plane. The force resul-
tants in each sub-laminate are denoted by F 1; F 2; F 3 and
F 4. The compliance matrix of the top and bottom sub-
laminates will be denoted by Ct and Cb. The deforma-
tion in a sub-laminate is then given by

e ¼ CF : ð10Þ
The deformations e are defined by

eT ¼ b ex0 jx cxz c; ð11Þ
where the components of the deformations are the strain
�x0 along the x-axis (not the sub-laminate mid-plane),
rate of change of rotation jx and the transverse shear
strain cxz, respectively. The force resultants are related
by the equilibrium conditions

F 1 þ F 2 ¼ F 3 þ F 4: ð12Þ
Further, since the sub-laminates 3 and 4 are intact (not
delaminated) the deformations in them should be iden-
tical, i.e., e3 ¼ e4, and hence

CbF 3 ¼ CtF 4: ð13Þ
If F 1 and F 2 are given, then F 3 and F 4 can be calculated
using the set of equations (12) and (13). The strain en-
ergy per unit length in any sub-laminate is given by

UL ¼ 1
2
F TCF : ð14Þ

Substituting Eq. (14) into Eq. (9) we obtain

G ¼ 1
2
F T1CtF 1 þ

1

2
F T2CbF 2 �

1

2
F T3CbF 3

� 1
2
F T4CtF 4: ð15Þ

Using the relations (12) and (13) in Eq. (15) an inter-
esting expression for G can be derived

G ¼ 1
2

F T4
�

� F T1
�
ðCt þ CbÞðF 4 � F 1Þ: ð16Þ

The term ðF 4 � F 1Þ is actually the column matrix of
forces transmitted through the crack-tip between the top
and bottom sub-laminates, and can be called the crack-
tip forces, F c. If a rigid link is used to connect the top
and bottom crack-tip nodes in a finite element model

Fig. 2. Sub-laminates in a delaminated beam and the coordinate sys-

tem.

Fig. 3. Crack-tip forces acting between the top and bottom sub-lam-

inates.
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(see Fig. 3), then the forces transmitted by the rigid link
will be exactly equal to the above crack-tip forces. It
may be noted that the crack-tip forces F c have three
components, an axial force, a couple and a transverse
force, corresponding to each degree of freedom of the
crack-tip nodes, u, w and w.
Another important implication of Eq. (16) is that

although there are six independent forces P1,
V1;M1; P2; V2, and M2 that can be applied to the two
delaminated beam ligaments (see Fig. 1), G depends only
on the three crack-tip force components. If the forces F 1
and F 2 are such that e1 ¼ e2, i.e., CtF 1 ¼ CbF 2, then
using Eqs. (12) and (13) one can show that F 1 ¼ F 4, and
then G ¼ 0. If the forces on the top and bottom sub-
laminates 1 and 2 are such that they produce conform-
ing deformations (e1 ¼ e2), then the same forces act in
sub-laminates 4 and 3, respectively, producing con-
forming deformations ðe3 ¼ e4Þ. Thus there is no need
for any interaction between the top and bottom lami-
nates at the crack-tip, and hence G ¼ 0.

2.4. Virtual crack closure technique

The VCCT technique has been used for plate and
beam fracture problems by many researchers [2,4,7,8].
Originally the VCCT technique for plate-like structures
was extended from the corresponding method used in
continuum models [9]. In the present study we will de-
rive the VCCT from the CTFM. The expression for G in
Eq. (16) can be written as

G ¼ 1
2
F Tc ðCtðF 4 � F 1Þ þ CbðF 2 � F 3ÞÞ; ð17Þ

where F c is the matrix of crack-tip forces, and Eq. (12) is
used in deriving Eq. (17). Using the compatibility
equation (13) in Eq. (17) we obtain

G ¼ 1
2
F Tc ð�CtF 1 þ CbF 2Þ: ð18Þ

Since the matrix product CF denote deformations e we
can write Eq. (18) as

G ¼ 1
2
F Tc

�uð1Þ0;x þ uð2Þ0;x
�wð1Þ

0;x þ wð2Þ
0;x

�wð1Þ
;x þ wð2Þ

;x

8>><
>>:

9>>=
>>;
: ð19Þ

In deriving the last term of the column matrix in Eq. (19)
we have used the fact that the beam rotation at the
crack-tip is same for both ligaments 1 and 2, i.e.,
w1 ¼ w2. Multiplying and dividing the right-hand side of
Eq. (19) by �Dx, where Dx is a small length used in the
virtual crack closure method, we obtain

G ¼ 1

2Dx
F Tc

uð1Þ0 � uðtÞ0
� �

� uð2Þ0 � uðtÞ0
� �

wð1Þ � wðtÞ
� �

� wð2Þ � wðtÞ
� �

wð1Þ � wðtÞ� �
� wð2Þ � wðtÞ� �

8>><
>>:

9>>=
>>;
: ð20Þ

The superscript ðtÞ in Eq. (20) denotes displacements
and rotation at the crack-tip, and superscripts (1) and
(2) denote, respectively, the displacements of the top and
bottom ligaments at a distance �Dx from the crack-tip.
In deriving Eq. (20) we have used the finite difference
approximation of the type

uð1Þ0;x ¼
uðtÞ0 � uð1Þ0

Dx
: ð21Þ

Canceling the crack-tip displacements in Eq. (20) we
obtain the equations for the virtual crack closure
method as

G ¼ 1

2Dx
F Tc

uð1Þ0 � uð2Þ0
� �

wð1Þ � wð2Þ
� �

wð1Þ � wð2Þ� �

8>>><
>>>:

9>>>=
>>>;
: ð22Þ

3. Extension to delaminated plates

In the case of delaminations in a plate the energy
release rate G varies along the delamination front.
Consider a delaminated plate wherein the delamination
front X is considered smooth. The sub-laminates be-
hind the delamination front are designated as (1) and
(2) and those ahead of the delamination front are
designated as (3) and (4) (see Fig. 3). The delamination
plane is chosen as the reference xy-plane. Assume that
due to external loads the delamination front extends by
an amount kðsÞ, where s is measured along the del-
amination front. Due to this advance of delamination
front the sub-laminates (1) and (2) gain some areas
whereas sub-laminates (3) and (4) lose equal amount of
areas. Assuming the strain energy density (strain energy
per unit area of the laminate) does not change very
much due to the small amount of crack propagation,
the change in strain energy of the plate can be com-
puted as

DU ¼
I
s

U ð1Þ
A

�
þ U ð2Þ

A � U ð3Þ
A � U ð4Þ

A

�
dkds: ð23Þ

Let the point-wise energy release rate be represented by
GðsÞ. Then by definition of the strain energy release rate
under constant loads we obtain another expression for
the change in the total strain energy of the plate

DU ¼
I

X
GðsÞdkds: ð24Þ

If we have to obtain identical DU from Eqs. (23) and
(24) for any arbitrary delamination propagation dkðsÞ,
then the integrands in those equations should be iden-
tically equal to each other. Thus we obtain an expression
for the point-wise GðsÞ as

GðsÞ ¼ U ð1Þ
A þ U ð2Þ

A � U ð3Þ
A � U ð4Þ

A : ð25Þ
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One may note the similarity between Eqs. (25) and (9)
derived for beams. Although Eq. (25) is an convenient
expression for computing GðsÞ, accurate computation of
the strain energy densities just ahead and behind the
crack front seems to be difficult. Finite element pro-
grams compute the force and moment resultants at the
Gauss quadrature points which are in the interior of
plate elements adjoining the crack front. Extrapolation
of the force resultants to the points along the crack front
introduces some errors which are magnified in the
computation of strain energy density UA. Since Eq. (25)
involves differences in the strain energy densities behind
and ahead of the delamination front, the computed GðsÞ
has much larger errors. In order to avoid these errors an
alternative method called CTFM is derived from
Eq. (25).
We can use the same notation as we used for beams

with the understanding that there are eight force and
moment resultants, and eight deformation components
(Whitney, 1987):

bF Tc ¼ bNx Ny Nxy Mx My Mxy Qx Qy c;
beTc ¼ b ex0 ey0 cxy0 jx jy jxy czx czy c;

ð26Þ

where N, M and Q, respectively, are the inplane force,
moment and shear force resultants. The laminate com-
pliance matrix ½C
 will be an 8� 8 symmetric matrix,
and it relates the force resultants and deformations:

e ¼ CF ¼
A B 0
B D 0
0 0 K

2
4

3
5

�1

fF g; ð27Þ

where the ½A
; ½B
 and ½D
 are the classical 3� 3 laminate
stiffness matrices and ½K
 is the 2� 2 transverse shear
stiffness matrix. In the context of plates the strain energy
density is defined as strain energy per unit area of the
plate and is given by

UA ¼ 1
2
F TCF : ð28Þ

Using the procedures used in deriving Eq. (16) from
Eq. (9) for delaminated beams, one can derive another
expression for GðsÞ from Eq. (25) as

G ¼ 1
2

F T4
�

� F T1
�
Ctð þ CbÞ F 4ð � F 1Þ: ð29Þ

As before, the term ðF 4 � F 1Þ is the matrix of crack-tip
forces. They also represent the jump in force and mo-
ment resultants that occur across the delamination
front.
Sankar and Sonik [9] showed that three of the eight

force resultants in a delaminated plate will be continu-
ous across the delamination front. Assume a coordinate
system such that the x-axis is normal to the crack front,
y-axis is tangential to the crack front and z is the
thickness direction. Then the continuous force resultants
are: Ny ; My and Qy . Thus the jumps in these force re-
sultants are zero, i.e.,

N ð4Þ
y � N ð1Þ

y ¼ N ð2Þ
y � N ð3Þ

y ¼ 0;
M ð4Þ

y �M ð1Þ
y ¼ M ð2Þ

y �M ð3Þ
y ¼ 0;

Qð4Þ
y � Qð1Þ

y ¼ Qð2Þ
y � Qð3Þ

y ¼ 0:
ð30Þ

Thus there will be only five components to the crack-tip
forces: three forces in the x, y and z directions; two
couples about the x and y axes, respectively. The three
forces will be the jumps in Nx;Nxy and Qx across the
delamination front, either in the top laminates (1 and 4)
or bottom laminates (2 and 3). The two crack-tip cou-
ples are the jumps in Mx and Mxy . Since the jumps in
Ny ;My and Qy are equal to zero and they do not con-
tribute to the crack-tip forces, we can delete the second,
fifth and seventh rows and columns in Ct and Cb; we will
denote them by C0

t and C0
b. Then from Eq. (29) an ex-

pression of point-wise energy release rate can be derived
as

GðsÞ ¼ 1
2
F Tc ðC0

t þ C0
bÞF c; ð31Þ

where the crack-tip forces are given by

bF Tc c ¼ N ð4Þ
x � N ð1Þ

x

� �
N ð4Þ

xy � N ð1Þ
xy

� �
M ð4Þ

x �M ð1Þ
x

� �h

� M ð4Þ
xy �M ð1Þ

xy

� �
Qð4Þ

x � Qð1Þ
x

� �i
: ð32Þ

The compliance matrices C0 will take the form

C0 ¼

C11 C13 C14 C16 C18
C13 C33 C34 C36 C38
C14 C34 C44 C46 C48
C16 C36 C46 C66 C68
C18 C38 C48 C68 C88

2
66664

3
77775; ð33Þ

where the Cij are the coefficients of the full compliance
matrix Ct or Cb.
It should be mentioned that the crack-tip forces in

Eq. (31) are line forces which vary along the delamina-
tion front. However in FE models discrete rigid links or
multi-point constraints will be used along the delamin-
ation front. The forces in these rigid links should be
divided by their spacing to obtain the crack-tip line
forces.

Table 1

Elastic constants of materials used in the numerical examples

Elastic constants

(GPa)

Resin Aluminum Graphite/

epoxy

E1 3.4 71.0 134

E2 3.4 71.0 13.0

G12 1.3 27.3 6.40

m12 0.3 0.30 0.34
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4. Results and discussion

In order to verify the effectiveness of the proposed the
crack-tip force method (CTFM) a double cantilever
beam example was considered (Fig. 5). The dimensions
of the DCB specimen are that used by Raju et al. [8] and
are as follows: total length 101.6 mm; delamination
length 50.8 mm; width 25.4 mm; total specimen thick-
ness 3.3 mm; sub-laminate thickness 1.65 mm. The
material properties used are listed in Table 1. In addition
to unidirectional graphite/epoxy, a 16-layer angle ply
laminate with the lay-up ½þ45;�45
8 was also analyzed.
This particular lay-up is of academic interest only for its
curing at temperatures higher than the room tempera-
ture will cause warpage. In the numerical examples the
transverse force applied to each ligament of the DCB is
1 N/m.
The normalized energy release rate values for the

various specimens computed using the CFTM are
shown in Fig. 4. These results compare well with the 3-D
analysis results of Raju et al. [8]. A comparison of G

computed by the virtual crack closure technique
(VCCT) and CTFM is shown in Fig. 5. The comparison
is very good for the example considered.
A new method called CTFM is derived for computing

point-wise energy release rate along the delamination
front in delaminated plates. Actually the method can be
derived from the VCCT or the previously derived strain
energy density method. However the CTFM is compu-
tationally simple as G is computed using the forces
transmitted at the crack-tip between the top and bottom
sub-laminates and the sub-laminate properties. Al-
though the strain energy density method is elegantly
simple and theoretically exact, accurate computation of
strain energy densities on either side of the crack front
may not be possible. Future work will involve applica-
tion of the aforementioned methods to general laminates
containing internal delaminations, free edge delamina-
tions and debonded stiffened panels.
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