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Thermal Stresses in Functionally Graded Beams
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Thermoelastic equilibrium equations for a functionally graded beam are solved in closed-form to obtain the
axial stress distribution. The thermoelastic constants of the beam and the temperature were assumed to vary
exponentially through the thickness. The Poisson ratio was held constant. The exponential variation of the elastic
constants and the temperature allow exact solution for the plane thermoelasticity equations. A simple Euler–

Bernoulli-type beam theory is also developed based on the assumption that plane sections remain plane and
normal to the beam axis. The stresses were calculated for cases for which the elastic constants vary in the same
manner as the temperature and vice versa. The residual thermal stresses are greatly reduced, when the variation
of thermoelastic constants are opposite to that of the temperature distribution. When both elastic constants and
temperature increase through the thickness in the same direction, they cause a signi� cant raise in thermal stresses.
For the case of nearly uniform temperature along the length of the beam, beam theory is adequate in predicting
thermal residual stresses.

Nomenclature
A; B; D = beam stiffness coef� cients
Ai j = coef� cients in the characteristic equation
ai ; bi = arbitrary constants
ci j = elastic constants
E = Young’s modulus
NE = plane strain Young’s modulus of the beam

G = shear modulus
h = beam thickness
M; N = force and moment resultants
M T ; N T = thermal force and moment
ri = ratio of arbitrary constants ai and bi

T = temperature
U; W; Uc; = displacement functions, complementary
Up , Wc, Wp and particular solutions
u; w = displacements in the x and z directions
®i = characteristic roots
®x ; ®z = coef� cients of thermal expansion
¯ = thermoelastic coupling coef� cients
° = exponent for variation of thermoelastic constants
°i j = shear strain
" = normal strains
µ = temperature distribution
· = exponent for temperature variation
·x = beam curvature
¸ = exponent for variation elastic constants
º = Poisson’s ratio
» = Fourier transform variable
¾i j = normal stresses
¿ = shear stresses
! = ° C · ¡ ¸

Introduction

F UNCTIONALLY graded materials (FGM) possess properties
that vary gradually with respect to the spatial coordinates. For
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example,the insulatingtile fora reentryvehiclecanbedesignedsuch
that the outside is made of a refractory material, the load carrying
structureis made of a strongand toughmetal, and the transitionfrom
the refractorymaterial to the metal is gradual through the thickness.
In traditional composite materials, the volume fraction of the � bers
or the inclusions is uniform, whereas in FGMs they vary gradu-
ally. In laminated composites,the propertieschange abruptlyacross
the interfacebetween successiveplies, which is again contrastedby
FGMs by allowingsmoothervariationof properties.Althoughfabri-
cation technologyof FGMs is at infancy, there are many advantages
to them. Suresh and Mortensen1 provide an excellent introduction
to the fundamentals of FGMs.

As the use of FGMs increases, for example, in aerospace, mili-
tary, automotive, and biomedical applications, new methodologies
have to be developed to characterize FGMs, and also to design and
analyze structural components made of these materials. Simple but
ef� cient and accurate analysisproceduresare required for optimiza-
tion studies also. One such problem is that of response of FGMs
to thermomechanical loads. Although FGMs are highly heteroge-
neous, it will be useful to idealize them as continua with properties
changing smoothly with respect to the spatial coordinates.This will
enable obtaining closed-form solutions to some fundamental solid
mechanics problems and also will help in developing � nite element
models of the structuresmade of FGMs. Aboudi et al.2;3 developed
a higher-ordermicromechanical theory for FGMs (HOTFGM) that
explicitly couples the local and global effects. Later the theory was
extended to free-edge problems.4 Pindera and Dunn5 evaluated the
higher-order theory by performing a detailed � nite element analy-
sis of the FGM. They found that the HOTFGM results agreed well
with the � nite element results. Marrey and Sankar6;7 studied the ef-
fects of stress gradients in textile composites consistingof unit cells
large compared to the thickness of the composite. Their method
resulted in direct computation of plate stiffness coef� cients from
the micromechanical models rather than using the homogeneous
elastic constants of the composite and plate thickness. Some of the
concepts in their analysisof stress gradient effects in heterogeneous
material systemsare applicableto functionallygraded(FG) material
also.

There are other approximations that can be used to model the
variation of properties in an FGM. One such variation is the ex-
ponential variation, where the elastic constants vary according to
formulas of the type ci j D c0

i j e
¸z . Many researchers have found this

functional form of property variation to be convenient in solving
elasticity problems. For example, Delale and Erdogan8 derived the
crack-tip stress � elds for an inhomogeneouscrackedbody with con-
stant Poisson ratio and with a shear modulus variation given by
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¹ D ¹0e.®x C ¯ y/. Sankar9 solved the plane elasticity problem of an
FGM beam subjected to transverse loading using a Fourier series
technique. It was found that for slowly varying loads beam theory
solutions are adequate. However, when the loading occurs over a
small area as in contact problems, elasticity solutions are needed.

Although elasticity equations can provide exact solutions, they
are limited to simple geometries, speci� c boundary conditions, and
special types of loadings. Hence, it will be useful to develop simple
beam/plate theories for structures made of FGMs. The validity of
the beam/plate theories can be checked by comparison with the
elasticitysolutions. In this paperwe analyzea FGM beam subjected
to thermal loading. No external loads are applied on the beam, but
a thermal gradient is assumed to exist across the thickness of the
beam. The plane thermoelasticity equations are solved exactly to
obtain displacement and stress � elds. A beam theory similar to the
Euler–Bernoulli beam theory is developed, and the beam theory
results are compared with elasticity solutions. It is found that the
beam theory results agree quite well with the elasticity solution
when the temperatures do not vary along the beam axis and only
through the thickness variation exists.

Elasticity Analysis
The dimensions of the FGM beam and the coordinate system are

shown in Fig. 1. Note that the x axis is along the bottomof the beam,
not in the midplane. The length of the beam is L and thickness is
h. The beam is assumed to be in a state of plane strain normal to
the xz plane, and the width in the y direction is taken as unity.
The boundary conditions are similar to those of a simply supported
beam, but the exact boundaryconditionswill becomeapparent later.
The top and bottom surfacesof the beam (z D 0 and h) are assumed
to be free of tractions. The temperature distribution µ in the beam
is assumed to be of the following form:

µ.x; z/ D T .x/e·z (1)

where · is a constant.We will tacitly assume the reference tempera-
ture (temperatureat which stresses and strains vanish) as µ D 0. The
function T .x/ can be expressed in the form of a Fourier series as

T .x/ D
1X

n D 1

Tn sin » x (2)

where » D n¼=L and n D 1; 2; 3 : : : . We will develop the ther-
mal stress analysis procedures for the temperature distribution
Tne· z sin » x . The solution for an arbitrary temperature distribution
can be obtained by superposition,as in Eq. (2).

The differential equations of equilibrium are

@¾x x

@x
C @¿x z

@z
D 0;

@¿x z

@x
C @¾zz

@z
D 0 (3)

Assuming that the material is orthotropic at every point and also
that the principalmaterial directions coincidewith the x and z axes,
the constitutive relations are
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where [c] is the elasticity matrix and ® are the coef� cients of ther-
mal expansion. We will introduce the thermomechanical coupling

Fig. 1 FG beam subjected to a temperature variation T(z) in the thick-
ness direction; note that the x axis is along the bottom surface of the
beam.
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where the ¯ are de� ned by
»
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We assume that all elastic stiffness coef� cients ci j and ¯ vary
exponentially in the z direction:

[c.z/] D e¸z

2

664

c0
11 c0

13 0

c0
13 c0

33 0

0 0 c0
55

3

775 ;

»
¯x

¯z

¼
D e° z

(
¯0

x

¯0
z

)
(7)

where ¸ and ° are constants that de� ne the gradation of the
thermoelastic properties, c0

i j D ci j (0) and ¯0
i D ¯i (0). Substituting

from Eq. (5) into Eqs. (3), and using strain-displacement relations
("x x D @u=@x , etc.), we obtain the followingtwo equationsin u.x; z/
and w.x; z/:
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We will assume solutions of the form

u.x; z/ D U .z/ cos » x; w.x; z/ D W .z/ sin » x (9)

From the forms of the displacements,one can note that the boundary
conditions at the left- and right-end faces of the beam are given by

w.0; z/ D w.L ; z/ D 0; ¾x x .0; z/ D ¾x x .L; z/ D 0 (10)

which is typical of simply supported beams. Substituting from
Eqs. (9) into Eq. (8) and also using µ D Tne· z sin » x , we obtain a
pair of ordinary differential equations for U .z/ and W .z/:

¡c0
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55U
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where .¢/0 ´ d.¢/=dz and ! D .° C · ¡ ¸/.
To simplify the calculations, we will assume that the FGM is

isotropicat every point. Further, we will assume that Poisson’s ratio
is a constant through the thickness. Then the variation of Young’s
modulus is givenby E.z/ D E0e¸z and we will assume¯0

x D ¯0
z D ¯0.

The elasticity matrix [c] is related to the Young’s modulus and
Poisson’s ratio by

[c] D
E

.1 C º/.1 ¡ 2º/
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The solution of Eqs. (11) consists of complementary functions Uc

and Wc and particular integrals Up and Wp . The complementary
functions can be derived as9

Uc.z/ D
4X

i D 1

ai e
®i z; Wc.z/ D

4X

i D 1

bi e
®i z (13)
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where ai and bi are arbitrary constants to be determined from the
traction boundary conditionson the top and bottom surfaces and ®i

are the roots of the characteristic equation for ®:
­­­­
A11 A12

A21 A22

­­­­D 0 (14a)

where

A11 D [.1 ¡ 2º/=2]®2 C [.1 ¡ 2º/=2]¸® ¡ .1 ¡ º/» 2

A12 D »®=2 C [.1 ¡ 2º/=2]¸»; A21 D ¡»®=2 ¡ º¸»

A22 D .1 ¡ º/®2 C .1 ¡ º/¸® ¡ [.1 ¡ 2º/=2]» 2 (14b)

Note that the characteristicequation (14a) is a quartic equation in ®
andwill result in four roots,and that is why we have four terms in the
complementary solution given in Eq. (13). The arbitrary constants
ai and bi are related by

ri D
bi

ai
D ¡ .1 ¡ 2º/®i .¸ C ®i / ¡ 2.1 ¡ º/» 2

»® C .1 ¡ 2º/¸»
(15)

The details of the derivation of the complementary functions may
be found in Ref. 9. The particular integrals will be of the form

Up.z/ D cU e!z; Wp.z/ D cW e!z (16)

The constants cU and cW can be found by substituting the assumed
solution in Eq. (16) in the governing differential equations (11),
which results in the followingpair of equations for the constantscU

and cW :
"
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The four arbitraryconstantsai can be foundfrom the tractionbound-
ary conditions on the top and bottom surface of the beam. In the
present thermal stress problem, we assume the top and bottom
surfaces of the beam are traction free:
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where G is the shear modulus, G0 D G.0/, Gh D G.h/, and
Ch

i j D Ci j .h/. Substituting for u and w from Eq. (9) into Eq. (18),
we obtain the boundary conditions in terms of U and W :

U 0.0/ C » W .0/ D 0; U 0.h/ C » W .h/ D 0

¡c0
13»U .0/ C c0

33W 0.0/ D Tn¯0

¡ch
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33W 0.h/ D Tn¯0e.° C ·/h (19)

As mentioned earlier, the solutions for U and W consist of comple-
mentary functions Uc and Wc and particular solutions Up and Wp .
Substituting for U and W from Eqs. (13) and (16) into Eq. (19), we
obtain four equations for ai :
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where ri are the ratio between the arbitrary constants ai and bi [see
Eq. (15)]. Solving for ai , we obtain the complete solution for U .z/
and W .z/ and, hence, for u.x; z/ and w.x; z/. The stresses at any
point in the beamcan beevaluatedin a straightforwardmannerusing
Eqs. (5).

Euler–Bernoulli Beam Theory for FGM Beams
We will follow the Euler–Bernoulli beam theory assumption that

plane sections normal to the beam axis (x axis) remain plane and
normal after deformation. Furthermore, we will assume that there
is no thickness change, that is, w displacementsare independentof
z. Then the displacements can be written as

w.x; z/ D wb.x/; ub.x; z/ D u0.x/ ¡ z
dwb

dx
(21)

where the subscripts b in Eq. (21) denote beam theory displace-
ments. Note that u0 denotes the displacements of points on the bot-
tom surface of the beam and not points in the beam midplane. We
assume that the normal stresses ¾zz are negligible, that is, ¾zz D 0.
Then the stress–strain relations take the simple form

¾x D NE .z/"x x ¡ N̄µ; ¿x z D G.z/°x z (22)

where the plane strain Young’s modulus is given by NE D
E=.1 ¡ º2/ and N̄ D ¯[.1 ¡ 2º/=.1 ¡ º/].

Note that the relations NE.z/ D NE0e¸z and N̄.z/ D N̄
0e° z hold good

because º is constant. From Eq. (21), expressions for axial strain
and stress can be derived as

"x x D du0

dx
¡ z

d2wb

dx2
D "x0 C z·

¾x x D NE"x ¡ N̄µ D NE"x0 C z NE· ¡ N̄µ (22a)

One can readily recognize the reference plane strain "x0 and the
beam curvature· in Eq. (22a). The axial force and bendingmoment
resultants N and M are de� ned as in the Euler–Bernoulli beam
theory:

.N ; M/ D
Z h

0

¾x x .1; z/ dz (23)

Note that the limits of integration in the de� nition of force and mo-
ment resultants in Eq. (23) are 0 and h. When ¾x x is substitutedfrom
Eq. (22a) into Eq. (23), a relation between the force and moment
resultants and the beam deformations can be derived as follows:»
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The de� nition of beam stiffness coef� cients A, B, and D is

.A; B; D/ D
Z h

0

NE.1; z; z2/ dz (25)

and the thermal force and moment are de� ned as

.N T; M T / D
Z h

0

.1; z/ N̄µ dz (26)
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Explicit expressions for the beam stiffness coef� cients can be
derived using NE.z/ D NE0e¸z:

A D
NEh ¡ NE0

¸
; B D

h NEh ¡ A

¸
; D D

h2 NEh ¡ 2B

¸
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The inverse relations corresponding to those in Eq. (24) are
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Because there are no external forces applied to the beam, N ´ 0 and
M ´ 0. Equation (28) can be solved to obtain the deformations ²x0

and · . When substituted back in Eq. (22), the stresses at any point
in the beam can be obtained.

Results and Discussion
The procedures described in preceding sections were applied to

an FGM beam with the properties shown in Table 1. The length of
the beam was taken as 100 mm and the thickness as 10 mm. In all
examples, the temperature variation was assumed to be of the form
µ.x; z/ D 1T0e·z , where 1T0 D 100, and · was such that the ratio
µ.x; h/=µ.x; 0/ D 10. For the thicknessof 10 £ 10¡3 m, the temper-
ature distribution resulted in · D 230 m¡1 . To perform the Fourier
series summation in Eq. (2), 51 terms were used. The thermoelastic
coupling coef� cient was assumed to be of the form ¯.z/ D ¯0e° z ,
with ¯0 D E0=104 . The valuesof ° werevaried,but theywere related
to ¸ as shown in Table 1.

The stresses were normalized with respect to the thermal stress
term ¯01T0 . The through the thickness axial stress distribution for
the � ve beams are plotted in Figs. 2–6. In all cases, the elasticity
solutions agreed very well with beam theory solutions, and the two

Table 1 Properties of FG beams used, · = 230 m ¡ 1

Beam
number E0, GPa Eh , GPa ¸, m¡1 °=¸

1 1 1 0 0
2 10 1 ¡· 1
3 1 10 C· 1
4 10 1 ¡· 1.5
5 1 10 C· 1.5

Fig. 2 Thermal stress distribution in a homogeneous beam; elasticity
solution and beam theory solution are almost indistinguishable.

Fig. 3 Thermal stresses in an FG beam; thermoelastic constants and
the temperature haveopposite typeofdistribution through the thickness
(¸ = ¡ ·), and this reduces the thermal stresses.

Fig. 4 Thermal stresses in an FG beam wherein the thermoelastic con-
stants and the temperature vary in a similar manner through the thick-
ness, that is, ¸ = ·; this increases the thermal stresses signi� cantly.

Fig. 5 Thermal stresses in an FG beam with ° = 1:5¸, but the ther-
moelastic constants and the temperature vary in an opposite manner
through the thickness, that is, ° = ¡ ·.
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Fig. 6 Thermal stresses in an FG beam wherein thermoelastic con-
stants and temperature vary in a similar manner through the thickness,
that is, ¸ = · and ° = 1:5¸; this increases the thermal stresses signi� -
cantly.

Fig. 7 Maximum and min-
imum values of normalized
thermal stresses (¾x /¯0 D T0 )
for ° = ¸.

Fig. 8 Maximum and min-
imum values of normalized
thermal stresses (¾x/¯0 D T0)
for ° = 1.5¸.

curves were mostly indistinguishable.The maximum tensile stress
always occurredin the vicinityof the neutralaxis of the beam.When
the variation of the thermomechanicalproperties, E and ¯ , were in
opposite sense to the temperature variation, that is, ¸ D ¡· , the
thermal stresseswere greatly reduced.This is the case with beams 2
and 4. On the other hand, when the variationof E and ¯ were in the
same sense as the temperature, that is, ¸ D C· , the thermal stresses
increased tremendously (beams 3 and 5). Increase in ° also resulted

in increasedstresseswhen other parameterswere kept constant.The
maximum (tensile) and minimum (compressive) stresses in various
beams are compared in bar charts presented in Figs. 7 and 8, where
the valuesare shown for Eh=E0 D 0:1; 1, and 10. As shown in Fig. 8,
the stressesarenegligiblysmall for Eh=E0 D 0:1 comparedto values
corresponding to Eh=E0 D 1 and 10.

Conclusions
An elasticity solution is obtained for FG beams subjected to

temperature gradients. Poisson’s ratio is assumed to be a constant,
and Young’s modulus is assumed to vary in an exponential fashion
through the thickness. The thermoelastic coupling coef� cient and
also the temperaturewere assumedto varyexponentiallythroughthe
thickness. A simple Euler–Bernoulli-type beam theory is also de-
veloped, based on the assumption that plane sections remain plane.
The results indicate that the thermoelastic properties of the beam
can be tailored to reduce the thermal residual stresses for a given
temperature distribution. This can be accomplished by varying the
thermoelasticconstantsin a manneroppositeto thegradationof tem-
perature through the thickness. In the present examples, the temper-
ature did not vary along the beam axis, and hence, the beam results
also agreed well with the elasticity solutions. If the temperature
variation along the x axis is drastic, then signi� cant differences be-
tweenbeamtheoryand elasticitysolutionsare expected.The present
method of analysis will be useful in the design and optimization of
thermal barrier coatings, thermal insulation tiles, and other thermal
protection systems.
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