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Discontinuities in the Sensitivity Curves Govering Equations

i i 1 The governing equations are derived for the Donrjdl], and
of Laminated Cylmdrlcal Shells Sanders[5], kinematic relations|[6]. They are obtained via the

variational principle for laminated cylindrical shell. Formulation
Yiska Goldfeld of the two approaches is based on the displacement components in

s the axial (1), circumferential ¢), and normalw) directions.
Research Scientist The equilibrium equations read:
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The discontinuity in the sensitivity of laminated cylindrical shells
is investigated via the initial post-buckling analysis. A general 00 Ny,

procedure for sensitivity, based on Koiter’s parameters and using —CW(W,B—UH ?W,x} =0

the Donnell and Sanders shell theories, is developed and used for

parametric study of the discontinuity phenomenon. It was found

that the discontinuity occurs at points of change of the circumfer- 2Mygxo  Mag,00 %HN W) (NggW g) ¢
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Introduction =0 1)

Shell-like structures are very sensitive to initial geometry im-
perfections. One of the main goals, in this field, is to find thd
various parameters that influence the shell’s sensitivity, thereby

ith the following boundary conditions:

improving the behavior of the whole structure. U or Ny

In the present note the characteristic behavior of the imperfec-
tion sensitivity is investigated on the aid of Koiter’'s asymptotic My
theory, [1]. Koiter showed that the imperfection sensitivity of a v or Ny,+ 5?

structure is related to its initial post-buckling behavior, In other

words, it is governed by the immediate slope at the bifurcation

point: if the latter is negative, the real buckling load will be less W of Mow o+ 2MXM+N T

than the theoretical one and the shell is sensitive. Accordingly, X O

fewer parameters are needed for characterizing the sensitivity be-

havior. e . . . . W,y or Mxx (2)
Here, the sensitivity curves of an isotropic and laminated cylin- '

drical shell are studied in terms of the circumferential wave numny;

ber (CWN). It was found,[2,3], that discontinuities always occur 5=0 for Donnell's kinematic relations

at points where the CWN is changed, and in the present note th%sgl for Sanders’ kinematic relations.

points are sought. ¢ is a correction factor for the second theor§=(1) in the
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Fig. 1 Sensitivity b parameter versus Batdorf Z-parameter for
simply supported (N,,=N,,=0) cylindrical shell under hydro-
static pressure

Initial Post-buckling

The imperfection sensitivity parameters determine whether t|
load increases or decreases after buckling. Accordingly, the d
placement, strain and stress vectors are expanded according tc
following scheme:

u 4 e el
vi=N v @+ oW e 0@ (@)
W w® w® w@

The load parametex representing the deviation from the classica
buckling load\., and ¢ being the perturbation parameter. The
superscripts?, (M and® denote the prebuckling, buckling, and
initial post-buckling states, respectively.

Applying the variational principle following Budiansky and
Hutchinson[9,10], the load parameter is obtained as
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Fig. 2 Hydrostatic buckling load and sensitivity b parameter
versus angle ply for simply supported (Ny,=v=0) cylindrical
shell with I/R=3
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Fig. 3 Hydrostatic buckling load and sensitivity b parameter
versus angle ply for simply supported (N,,=v=0) cylindrical
shell with [/R=10
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Fig. 4 (a) Axial buckling load and circumferential wave num-
ber versus angle ply for simply supported (v=0) cylindrical

shell with I/R=3 (b) Sensitivity a and b parameters versus
angle ply for simply supported (v=0) cylindrical shell with
IIR=3
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Y parametefEq. 6 as well. It is worth noting that in this example
o 1+aé+be+--- (4) Donnell's and Sanders’ theories yield the same values.
¢ In the second caséaminated cylindrical shellthe buckling

load and the b are plotted against the angle{glyy) in Figs. 2

where a and b are known as the Koiter parameters. For isotrogied 3 forl/R=3 and 10, respectively. It is seen that both of them
cylindrical shells the coefficient a vanishes due to the periodicitikewise highly dependent on the CWN, and the b parameter ac-
of the buckling mode in the circumferential direction, but for &luires a discontinuity as in the first case. It is found that the initial
laminated cylindrical shell under axial compression it was foungircumferential internal force, )y affects it most.

that it does not. As for the coefficieb a positive value indicates ~ Furthermore, it is seen that the buckling load and the sensitivity
that the shell is insensitive, a negative value measures the levePé# also highly dependent on the angle ply. Regarding the sensi-

sensitivity. For the linear prebuckling state Budiansky and Hutchvity level, it is seen that the angle ply has the same effect as a
inson derived the well-known formulas: stringer, namely, as it increases so does the buckling load while

the sensitivity decreases.
The different between Sanders’ and Donnell's shell theories is

30-Lo(uy) insignificant for buckling load but still Sanders’ yield lower val-
a= 55 oo Lo(Uy) (®)  ues, and quite pronounced for the b parameter; the more accurate
¢ the theory(Sandery the lower the sensitivity and the buckling
load.
b 05 Lo(Ug)+207-Lig(Uq,Up) (6) Axial Compression. The axial buckling loadapplied by set-

Neoo-Lo(Uy) ting Ny,=N,, at one edgg the CWN, the a and b parameters are
plotted againset the angle ply-«) in Fig. 4 according to Don-
. . . I's theory. Here, again, the discontinuities occur at points where
In terms of the displacement components the operator is wrltten%eé CWN changes, both in the b parameter and in the slope of the
buckling-load curve(at + a=62° the transition is most pro-
brex( Twhw® nounced, from CWN-1 to CWN=7).
oi-Liy(y, :Uk):f f {Ng(')z[wgJ()w(;()]-ngg{'a—z’ﬁ Unlike its isotropic counter part, for the laminated cylindrical
aJo o R shell the a parameter does not necessarily vanish: for EWN
(axisymmetric buckling modethe sensitivity is characterized by
_ ﬁ(v(j)w(k)Jrv(k)W(j)) the asymmetric a parameter and while for CWN it is charac-
R? 0 0 terized by the b parameter.

Wil W) s

rangy TR TR (0

Conclusions
+u<k}Wf)j())Hd0dX ij,k From the results the following conclusions can be drawn:

« Discontinuities in the b parameter always occur at points
=0,1,2 @) where the critical circumferential wave number changes.
* Where the sensitivity a parameter is not zero, the sensitivity b
o parameter vanishes, and vice versa.
The superscripté§), (j), and(k) denote the relevant state as above. . Tpe angle ply has, in some cases, the same effect as a stringer
These equations are solved through expansion of the dependent configuration: as it increases does the buckling load, while
variables in Fourier series in the circumferential direction and in e sensitivity decreases.
finite differences in the axial direction. Afterwards the Galerkin
procedure is used to minimize the error due to the truncated form
of the series.
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A Combined Fourier Series-Galerkin assumed to vary through the thickness in an exponential fashion,

. e.g., E(z2)=Eqe*% The material was assumed to be isotropic at
Method for the Ana|y3|5 of every point and the Poisson’s ratio was assumed to be constant

Functionally Graded Beams everywhere. This assumption enabled them to obtain analytical

solutions using Fourier expansion methods. However, in practice
the properties of FGM will vary in an arbitrary fashion and the
H. Zhu aforementioned solution technique may not be useful. In the
present paper we assume that the property variation through the
Graduate Student thickness can be expressed in the form of a polynomial inzthe
coordinate. We demonstrate the application of both Fourier series

B. V. Sankar and Galerkin methods for obtaining an approximate solution for
Professor, displacements and stresses in a FG beam. The solutions are com-
Fellow ASME pared with available exact solutions and the agreement is found to

be very good.

Department of Mechanical and Aerospace Engineering,
University of Florida, Gainesville, FL 32611-6250
Analysis

Consider a functionally grade@=G) beam of heighth and
The method of Fourier analysis is combined with the GalerkilengthL as shown in Fig. 1. The beam and the loading are sym-
method for solving the two-dimensional elasticity equations for metric about the center line=L/2. The beam is assumed to be in
functionally graded beam subjected to transverse loads. Thestate of plane strain normal to thkez plane.
variation of the Young's modulus through the thickness is given byThe transverse loa@,(x) acting on the beam can be repre-
a polynomial in the thickness coordinate and the Poisson’s ratio &nted by a Fourier series as
assumed to be constant. The Fourier series method is used to )
reduce the partial differential equations to a pair of ordinary dif- 024%,0)= = PA(X)=—pp Sinéx (1)
fsrential equations, which are solved using the Galerkin me_tho\%,.nelre ¢=nm/L, n=1,35... and Fourier coefficients, are

esults for bending stresses and transverse shear stresses in :@pén by

ous beams show excellent agreement with available exact sofu-
tions. The method will be useful in analyzing functionally graded 2 (L
structures  with  arbitrary  variation  of  properties. pn:EJ’ pL(X)sinéxdx. (1b)
[DOI: 10.1115/1.1751184 0

We will demonstrate the solution method for the lgagsin éx in
this note. Then the traction boundary condition on the bottom

Introduction surface of the beam is given by

Functionally graded materialéGMs) possess properties that 0,4X,00=—ppsinéx, 7,,=0. (Ic)

vary gradually with location within the material. FGMs d'ﬁer.Sincen is odd, the load is also symmetric about the centerline.

er?irfr:) rﬁ%?gj“ﬁi:{?ﬁéﬂgﬂ?%g&“?ﬁef::?ggggt g‘;g}g 'iggllé?'gg@he boundary conditions are similar to that of a simply supported

. g . P ' 091€S ¢ gam, but the actual boundary conditions will become clear later.
are laminated composites, but the latter possess distinct mterfacewe assume that the FGM s isotropic at every point and the
across which properties change abruptly. Suresh and Mortenﬁﬂsson’s ratio is a constant through the thickness. The variation

[1] provide an excellent introduction to the fundamentals o(;f Young’s modulusE in the thickness direction is given by a
FGMs. As the use of FGMs increases, for example, in aerospa lynomial inz as

automotive, and biomedical applications, new methodologies h
to be developed to characterize FGMs, and also to design and 3

analyze structural components made of these materials. For ex- E(z)=E, h N N ) 2)
ample, Pindera and Dur2] developed a higher order microme-

chanical theory for FGM$HOTFGM) that explicitly couples the whereE, is the Young’s modulus at=0, anda;, a,, az, anda,
local and global effects. Delale and Erdod&hderived the crack- are material constants.

tip stress fields for an inhomogeneous cracked body with constantrhe differential equations of equilibrium are

Poisson ratio and with a shear modulus variation givenuby

2
+a4

4 4

a;t+a, +az

= ol *A In general the analytical methods should be such ‘7Uxx+ ‘9sz:0

that they can be incorporated into available methods with the least X Jz

amount of modifications, if any. One such problem is that of re- @)
sponse of FGMs to thermomechanical loads. Although FGMs are 0Ty, 007,

highly heterogeneous, it will be useful to idealize them as con- oX 0z =0.

tinua with properties changing smoothly with respect to the spatial ) o o o )
coordinates. This will enable obtaining closed-form solutions #ssuming that the principal material directions coincide withxthe
some fundamental solid mechanics problems, and also will help@fdz-axes, the constitutive equations are

developing finite element models of the structures made of FGMs.

In a series of papers Sankar and his co-worKdrs,7|, reported Oxx Cu Ciz 0 Exx
analytical methods for the thermomechanical and contact analysis Oz2( =|Ciz3 Czz O €22 4)
of FGM beams and also for sandwich beams with FG cores. In Tuz 0 0 ¢ Yz
these studies the thermomechanical properties of the FGM were 55
or
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- o=Ce.

CHANICS. Manuscript received by the ASME Applied Mechanics Division, July 1, o ) ) )
2002, final revision, December 5, 2003. Associate Editor: R. R. C. Benson. The elasticity matri C] is related to material constants by
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3}

Substituting the approximate solution in the governing differential
L equations, we obtain the residuals. The residuals are minimized by
> equating their weighted averages to zero:

AT

h
= %, f (éS+T,) ¢i(2)dz=0, i=1,4
| ; ’ 0 (13)

h
f (S,—T,6)¢i(z)dz=0, i=1,4.
0

PAx)
Using integration by parts we can rewrite E¢3) as
Fig. 1 A FGM beam subjected to symmetric transverse load-

! h h
e f $1£SdZ+T,(h) (1) = T,(0) (0) - f T,${dz=0
0 0
i=1,4 (14)
1 — V13 O h h
E. &, J sz¢i’dz+f T,é¢dz—(S,(h) (1)~ S(0) $,(0)) =0
0 0
- 1
ci=| 2B — o |. ) i=14.
Ell E33 . . .
1 Substituting forS,(z), S,(z), andT,(z) from Egs.(9) into (14)
0 0 = and using the approximate solution 1d(z) andW(z) in (11) we
Gis obtain
We assume the solution for displacements as Kfjl) Ki(1.2> (b) (fgl)
I
= 3 4) = .<2>) (19)
u(x,z)=U(z)coséx ©) Kfj ) Ki(j c fi
W(X,z) =W(z)sin&x where
Substituting Eq(6) into (4), we obtain h , h ,
K§ﬁ>=§f c13¢i¢jdz—ff G| ¢ydz
Oy Ciy Ci3 O —&U sinéx 0 0
O,7| = C]_3 033 0 W' sin §X (7) @ h L, 5 h
Tz 0o o0 &/ \(U+&EW)coséx Kij :_LG¢i ¢jdz—¢ focnlﬁi(f’jdz
The prime(’) after a variable denotes differentiation with respect h h
to z With Egs.(6) and(7), one can state that the boundary con- Ki<j3): _§2J G¢i¢jdz_j Cazdp! ¢j’dz
ditions of the beam at=0 andx=L arew(0,z)=w(L,z)=0 and 0 0
axx(o_,_z)qux(L,z)zo, which corresponds to si_mply support h h
conditions in the context of beam theory. Equatias can be Ki(jA)fo Casdi ¢jd2—§f Geildz (16)
written as 0 0
(Uxx):(z)singx H1= 4(0)T,(0)~ () T(h)
g
- ®) 121~ ,(0)S,(0) — (1) S,(h)
Tyz= I, COSEX .
where (C) :(bl b2 b3 b4 Cl C2 03 C4).
(Sx) _ REERE (*fu) Traction boundary conditions on the top and bottom surfaces of
S;) \cig cggfl W © beam are
T,=G(U"+£W). 7 /(%,0)=0
Substituting forayy, o,,, 7y, from Egs.(7) into equilibrium Egs. T(X,h)=0 17
(3), we obtain a set of ordinary differential equationdJz) and i 17)
W(2): 024X%,0)= = py Sinéx
§S><+T£=0 10 o,4X%,h)=0.
S-T,é=0 (10) In terms ofS, andT,, the boundary conditions take the form
VA - .
In order to solve Eqs(10) we employ the Galerkin method. We T(0)=T,(h)=0
assume solutions of the form S,(0)=—p, (18)
U(z)=C1$1(2) + C26p2(2) + C3p3(2) + Cap4(2) (11) S,(h)=0.
W(2)=b1¢1(2) +b3$2(2) +b33(2) +b4h4(2) Equations(18) can be used to evaluaté” andf(® in (16) which
q i

where ¢, are basis functions, arfdl andc, are coefficients to be @re the right-nand side of EQLS). Solving Eq.(15), we obtain the
determined. For simplicity we choose 4,22, 2% as basis func- solutions for the coefficients; andc;, which yield the approxi-
tions. That is mate solutions folJ(z) andW(z) in (11). OnceU(z) andW(z)

' ' are determined, stress at any point can be computed using&gs.

$1(2)=1; ¢(2)=2;, ¢3(2)=2% a(2)=2% (12) and(9).
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Table 1 The coefficients of the cubic polynomial for E(2). E; that smaller values ofh represent slender beams or beams sub-
=10 GPa and beam thickness h=10 mm. jected to more uniformly distributed loads, whereas larger values
of ¢h indicate short stubby beams or beams subjected to concen-
trated loads. From Figs. 2 and 3 it can be noted that the results of
10 1 2.9577 —0.7889 6.7982  the Galerkin method agree very well with the exact solutfdn,
01 1 —2.1845 1.9844 —0.6996  The difference of two solutions is imperceptible. The normalized
stresses are less than 1 when the loads are applied to the softer
face (Fig. 2, E;,/Eq=10). On the other hand, the normalized
) ) stresses are much greater than 1 when the loads are applied to the
Results and Discussion harder facgFig. 3, E,/E,=0.1). One can also note the approxi-
In order to verify the present method examples frfith are Mate location of the neutral axis for the two beams in these fig-
used. In these examples the variation of Young’s modulus is a4€s- o
sumed to be of the forrE=E,e*?". The same variation can be The transverse _shear stresses are plot;ed in Figs. {1_and 5. The
approximated by the polynomial form given in B&). The coef- approximate solution also agrees well with exact solitions. The
ficients of the polynomiala, , . . .a, were determined by using shear stresses attain the maximum value at the neutral axis. The
the least squares curve fitting. Two types of beams were COnslmn_rmallzed maximum shear stress values are above the conven-
ered, and the variation of Young’s modulus in these beams gfgnal 1.5, when the loads are applied on the harder surface of the
given by E,/Eo=10 andE,/E,=0.1, respectively. In the first beam(Flg. 5), but fall be_Iow_ 1.5, in some cases when the loads
beam the load is applied on the softer face of the beam and in i€ applied to the soft sid&ig. 4). _
second on the harder side. In both caEgswvas taken as 1 GPa The present_method can be applied to_functlonally graded struc-
and v=0.25. The thickness of the beamkis= 10 mm. The coef- tures with arbitrary variation of properties and also can be ex-
ficients of the cubic polynomial foE(z) are given in Table 1. tended to platelike structures and sandwich construction wherein
The results for the normalized bending stress for various valull core material and/or the face sheets are functionally graded.
of ¢th=n=/L are presented in Figs. 2 and 3. It should be noted

En/Eq a, a, as ay

1 14
0.9} — 0.9+ 4
081 i 08r Exact solution 1
Exact Solution i o7y +——+ Galerkin method |
+———+ Galerkinmethod ] 06r E,/E,=10 / ‘\ ]
E,/E,=10 1§ o5 gh=3 Eh=1
mo §h=2
4 0.4}
g 0.3+ 1
4 0.2+ J
g 0.1 g
05 1 o 02 04 06 08 1 1.2 1.4 1.6 1.8
O, 2V, (xh) T Txz{average)
Fig. 2 Normalized axial stress o, through the thickness of Fig. 4 Transverse shear stress through the thickness of FGM
FGM beam for E,=10 E,. The exact solution and that of Galer- beam for E,=10E,. The exact solution and that of Galerkin
kin method are indistinguishable. method are indistinguishable.
1 : 1 -
0.9+ b 0.9+ 7
0.8 _ Exact solution ] 0.8f B
o7y +——+  Galerkin method A o7r 7
08¢ E,/Eq=0.1 ] 06f . 7
— . Exact solution
g o5 1 $ o5¢ 1
0.4} J 04l  +—* Galerkin method Eh=3 |
E /E,=0.1
0.3} 1 0.3} "o Eh=t j .
02F Eh=3 - o2} &h=2 i
01 B 0.1k 4
D e L
-10 -8 Te 4 2 0 2 % oz 04 06 08 1 12 14 16 18 2
0, x.2)o,, xh) Ty Txz(average)
Fig. 3 Normalized axial stress o, through the thickness of Fig. 5 Transverse shear stress through the thickness of FGM
FGM beam for E,=0.1 E,. The exact solution and that of Galer- beam for E,=0.1 E,. The exact solution and that of Galerkin
kin method are indistinguishable. method are indistinguishable.
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dx, )

Now, if the beam’s material is randonk is a random field
parametrized by, which we can write as a sum of a constant

Fracture of Brittle Microbeams mean(E) and a zero-mean fluctuatid®' (x)

E(w,X)=(E)+E'(0,X) wel}, ()]
M. Ostoja-Starzewski where ) is a sample space. Tak€ (x,w) as a wide-sense sta-
Department of Mechanical Engineering, McGill tionary random field. A random material is thus defined as an

University, 817 Sherbrooke Street West Montreal, ensemble5={B(w);w = 0} ={E(w,X);wcQ,x[0a]}. Here,
PQ H3A 2K6, Canada and in the foIonvmg, we explicitly show the dependen_ce @n

. . . . whenever we wish to indicate the random nature of a given quan-
e-mail: martin.ostoja@mcgill.ca tity prior to ensemble averaging.

Fellow ASME On the physical side, the need to consider randomneds of
arises when the representative volume elem&WJE) of con-
tinuum mechanics cannot be safely applied to the actual beam.

The random polycrystalline microstructure of microbeams nece’g‘-mong others, problems of th|§ type are driven by the challepges

sitates a reexamination of the crack driving force G stemmir:y_‘ micro a;:r?d qanortlechnology, 323" e.g5,6])_. SUCtT].a t‘;]aiet's

from the Griffith fracture criterion. It is found that, in the case of tg\l’lgll I(;]imlegr;si(’)r:lt—eireea fr?:?/er |c(r)c;]eeear2|f?nisno |t|2 Ygurlls’s
dead-load conditions, G computed by straightforward averagirﬁ dulus—beains t b )tl)l to th gt | gl él'hg

of the spatially random elastic modulus E is lower than that oh- odulus bl egins Ot _edcompgrg be o the cr()j/;: Zd the

tained by correct ensemble averaging of the stored elastic ener .IrEn.patrabe aslpecdlz esctrlt.et. Iy al mesosl éVaEn Th N

This result holds for both Euler-Bernoulli and Timoshenko models'.— 'S 10 P€ répiaced by a statistical volume € en ). The

of micro-beams. However, under fixed-grip conditions G is to ite-size scaling laws of the SVE—i.e., its approach to the RVE

computed by a direct ensemble averaging of E. It turns out th\gfth fL{Id—mf—were r(;cently reviewed '[17.]' | h that. f

these two cases provide bounds on G under mixed loading. Fur-It ollows from (1).t a_tU is a random integral, such that, for

thermore, crack stability is shown to involve a stochastic compgfjlCh and every realizatian< (3, we should consider

tition between potential and surface energies, whose weak ran-

domness leads to a relatively stronger randomness of the critical

crack length. [DOI: 10.1115/1.1651091

Background

According to Griffith’'s theory[1], of elastic-brittle solids, the
strain energy release ra@&is given by

WV _
A oA

where A is the crack surface area formed] is the work per-
formed by the applied load$l is the elastic strain energy, and

is the energy required to form a unit of new material surfacg.,

[2]). The material parameteris conventionally taken as constant,
but, given the presence of a randomly microheterogeneous maté
rial structure, its random field nature is sometimes considered €
plicitly (e.g.,[3,4]). If one recognizes, however, that the randomn
material structure also affects the elastic moduli, the computatic a

P

2y (1)

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF i X X
MECHANICAL ENGINEERSTor publication in the ASME OURNAL OF APPLIEDME-  Fig. 1 Fracture of a microbeam of thickness L off a substrate.
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Dec. 16A statistical volume element  (SVE) imposed by the random mi-
2002; final revision, Aug. 1, 2003. Associate Editor: M.-J. Pindera. croheterogeneous structure characterized by scale d is shown.
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a M2dx U*(a,(E))|a=0=0 U*(a(E" 1 1],_0=0, 16

U(a,E(w))=f ) (5) ( < >)‘a 0 ( < ) )|a 0 ( )
0 21E(w,X) and the definitions

Upon ensemble averaging, this leads to an average ener JU(a,(E JU(a(E"H 1

p ging g gy G (a(EY) = (a(E)) G*(a(E Y )= (afE"") |
a M2dx Boa Boa
(U(a,E))=<fom>- (6) 17)
yields

In the conventional formulation of deterministic fracture me- G*(a,(E))=G*(a(E"H 1. (18)

chanics, random microscale heterogeneiti€¢x,w) are disre- . . . . . .
garded, and5) is evaluated by simply replacing the denominatof"_r:]cel%(a'<E>)—G (a,(E)) in a linear elastic material, we ob-
by (E), so that al

aM2dx Inequality (12) shows thatG computed under the assumption
U(a,(E>)=f — (7) that the random material is directly replaced by a homogeneous
0 2I(E) material E(x,w)=(E)), is lower thanG computed withE taken

. . . explicitly as a spatially varying material property. Clearly,

Clearly, this amounts to postulating that the response of an |de€é(a£)> is the correct quantity to be used under dead loading.

ized homogeneous material is equal to that of a random one on

average. Therefore, we are interested in making a statement abolRemark 1. With the beam thickness increasing, the mesos-

(U(a,E)) versusU(a,(E)), and aboutG(E)) versusG((E)).  caleL/d grows, so thaE’'—0. Thus,(E"%)"1—(E), and(12)
First, note that, since the random proc&se positive-valued turns into an equality, whereby the deterministic fracture mechan-

almost surely(i.e., with probability ong Jensen’s inequality8], ics is recovered.

yields an inequality between harmonic and arithmetic averages of

the random variabl&(w) Remark 2. These results carry over to a Timoshenko beam.
1 . In that case, strain energy is defined by
=l (8) am? a v?
(E) <E> U(a)=f —dx+f ——dx, (19)
0 2IE 0 2Au

whereby thex-dependence is immaterial in view of the assumed
wide-sense stationarity of fielH. With (6) and (7), this implies whereV is shear forceA is beam’s moment of inertia, and is

that shear modulus. The random material is now defined as a vector
aM?dx  (aM?/1 random field3={C(w,X);we Q,xe[0,a]}, where the stiffness
U(a,(E))= Omg V2T \E dx C=[E, u]. With the strain energy release rate defined 3y we
now derive
- a—Mde =(U(a,E)) ) G(a,(E).(u))<(G(a,E,n))=G*(a(E" ") " (™ H™h).
0 21E(w,x) o (20)

since the conditions required by Fubini’s theordsi, are met. ~ 1he equality in (20) follows from the random Legendre

Now, if we define the strain energy release i@, (E)) in a transformation.
hypothetical material specified B¥E), and the strain energy re-
lease rate/G(a,E)) properly ensemble averaged in the randorF—'ixed-Gri Conditions
materia{ E(w,X);w e Q,xe[0,a]} P
In this case the displacement is constaw., nonrandory and

dU(a,(E)) HU(a,E)) i i i
G(a,(E))= (G(a,E))= (10) the load is random. Now, only the first term (i) remains so that

Boa Boa ’ JU%(a)
and note that the side condition is the same in both cases =" "Boa - (21)
U(a,(E))|a=0=0 (U(a,E))|a=0=0, (11)  suppose now that there is loading by a foRat the tip, so that
we obtain we have I
G(a,(E))<(G(a,E)). (12) __ur
G 2B gda’ (22)

This provides a formula for the ensemble aver&ander dead-
load conditions using deterministic fracture mechanics for EuleTake now a cantilever beam problem implyirR=3uEl/a®.

Bernoulli beams made of random materials. Then, we find
Another derivation of this is obtained by first introducing a
complementary energy through an application ohadom Leg- (G)=— u faP\ U A(P) 9u?I(E) 23)
endre transformation[9], ~ 2B\da/ 2B da  2Ba* |
U*(a,E(w))=M-6-U(a,E(»)) we, (13)  since the load—be it a force and/or a moment—is always propor-
where ¢ is the angle of twist conjugate #d, such that tional to E, this indicates thaG can be computed by a direct

ensemble averaging d& under fixed-grip loading, and, indeed,
the same conclusion carries over to Timoshenko beams.

AE(w)
U*(a,E(w))= 3 6%dx. (14)
0
It then follows from(8) that Mixed-Loading Conditions
al(E(w)) | A (E" Y w)) L 5 In general, both load and displacement vary during crack
U*(a,(E(w)))= — 0°dx= — o-dx growth, and there is no explicit relation between the crack driving
0 0 force and the change in elastic strain energy. However, we can
ok -1 -1 bound G under mixed loading Gixed by G under dead load
=U* (@B () ), (15) (Gp) andG under fixed grip G,), providing we note the follow-
which, with the side condition ing facts:
Journal of Applied Mechanics MAY 2004, Vol. 71 | 425

Downloaded 22 May 2009 to 128.227.7.57. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



(i) Observe that Gp=(G(a,E)), while G,=G(a(E)). }
Clearly, in view of(18), the ensemble averages satisfy

G,<Gp. (24) (I) = 2a(y)

(i) Any (dP,du) change in theP, u-plane, corresponding to
Gixeq due to an extension of the crack dy, may be split into
two parts: (Odu) and dP,0). The first part, involving an exten-
sion of the crack by da);, is computed asGp=(G(a
+(da),,E)). The second part, involving an extension of the

crack by da),, is computed a&,=G(a+(da),,(E)). (ID) + (T
(iii) Observe that
Ghixed@t+da)=G,(a+(da),)+Gp(a+(da);)<Gp(at+da) -
(25) a

becauses(a+(da),)<Gp(a+(da),) by (24), while
Gmixed @+ da)=Gy(a+(da);) +Gp(a+(da),)=G,(a+da) a (E(w))

(26) _
becauseGp(a+ (da);)=G,(a+(da),) again by(24). (ID = I((1/E))

It follows that G,,ixeq due toda=(da), +(da), is bounded by
the G's computed under dead-load and fixed-grip conditions, fror
above and below, respectively:

Fig. 2 Potential ener II({1/E)) (thick line ) and its scatter
Gu=Crmixed=Gp- 27) sh%wn by a parabolic V\?gdge (((thinqin(es ), sumn)1ed with the sur-
Note that, interestingly, in mechanics of random media, thHeace energy (I')=2a(y) (thick line ) and its scatter shown by a
energy-type inequalites are usually ordered in an inverse fashistiaight wedge (thin lines ), results in II({1/E))+(T") (thick line )
kinematic (resp. forcg conditions provide uppefresp. lowey and having scatter shown by a wider parabolic wedge (thin
bounds. lines). Dashed region indicates the range of a critical crack
Moving on to the case of Timoshenko beam loaded at the tij§"9th ac(E(®)), a random variable.
we have four particular possibilities:
(i) PandM fixed: Gp_ ,
(if) P and @ fixed: Gp_g, ) ) )
(i) uandM fixed: G,_y, Next, if we take, in analogy t64), the surface energy density as
(iv) uand @ fixed: G,_,, a random field made up of a constant méghand a zero-mean

wherein Gp_, and G,_, are G's under mixed conditions. fluctuationy’(x)
Now, in place of(24) we have ,
P (24 Y(o,X)=(+7y (0,X) we, (32)

Gu-g=<CBp-¢=<Cp-m Gy-p=<Cu-w=<CGp-m. (28) then the surface enerdy(w) =2a[(y)+ y'(w)]. Thus, using two
: - straight lines, we indicate scatter abo{f)=2a(y). Conse-
Stochastic Crack Stability quently, the scatter about the meanfﬁfﬁ%(w) i<s I>arger than
Recalling the fracture criteriofil), we observe that cracking that of IT(w) or I'(w) alone, and at the maximum of their sum we
along thex axis is governed by an interplay of two random fieldhave a stochastic competition between both contributions. Evi-
(parametrized by): the elastic propert§ and the surface energy dently, according td29), the critical crack lengtla, becomes a
density y. In view of the scaling arguments concerning the SVisandom variable—i.e.a.(E(w))—and we show its range by a
versus the RVE in the paragraph following Ed), the first one is dashed region in Fig. 2. In view dB0), there is an inequality
a function of the beam thickneds but the second one is not. between the average. properly calculated frombl((1/E))
Thus, for statistically stationary and ergodic materials, the ran-
domness of decreases to zero as the mesostatk—, but the FPLI((1EY) +(T')]

—0=a(LE))=(a,(E))  (33)

randomness oy remains constant. To sum up, cracking of micro- 922
beams is more sensitive to the material randomness of elastic
moduli than cracking of, say, large plates. and the deterministie. simplistically calculated fromI((E)) is
Crack stability in any particular micro-beatwe (), in a gen- 5
eral loading situation, is governed by the condition of the same ITIL(E)) +(I')] —0=a,((E)) (34)
form as that in deterministic fracture mechanic, ga? ¢ '
<0: unstable equilibrium The said inequality is
P (w)+T()) " uatly
T =0: neutral equilibrium (29) a.((LE))<a.((E)). (35)
>0:  stable equilibrium. Note that the equalitg((1/E))=(a.(E)) in (33) follows from

Here both, the total potential ener§ii{w) and the surface energy (31). Finally, Fig. 2 shows that small random fluctuationgsiand
I'(w) are random. Now, under dead-load conditions, the correctly (i.e., scatter about the maximum ®F((1/E))+(T')) lead to
averagedII) (shown by a solid lingis bounded from above by relatively much stronge!) fluctuations ina, .

the deterministidI estimated by a straightforward averagingeof

H((1E)) =(I)<II((E)). (30)

] ) Acknowledgment
The above follows again fronB). Typically, the energyl goes c ) ; . helped i
ke —a®. Thus, in Fig. 2. we use a wedge of two parabolas tp, (20 @ SR TETe Yot S the stppor
indicate scatter associated with the mean of this research by the NSERC and the Canada Research Chairs
II((1/E))=(II). (31) Program.
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Consider a circular disk of outer radilisand inner radiusa

Elastic-Plastic Stress Distribution in a rotating with an angular velocity about its axis. The thickness of

H ; ; H the disk is assumed to be small such that the plane state of stress
Pl_astlcally AnISOtrOpIC ROtatmg can be adopted. In a cylindrical coordinate systefa with its
Disk z-axis coinciding with the axis of rotation, there are only two

nonzero components of the stress tensgrand o,. The elastic
properties of the material are assumed to be isotropic, and the

N. Alexandrova elastic portion of the strain tensor obeys Hooke’s law. In the cy-
Department of Civil Engineering, University of Aveiro, lindrical coordinates chosen, Hill's yield criterion has the form
3810-193 Aveiro, Portugal (G+H)o?—2Ho 04+ (H+F)o2=1 1)

e-mail: nalexandrova@civil.ua.pt whereG, H, F are constants which characterize the current state

of material anisotropy. It is convenient to rewrite) as
S. Alexandrov

Institute for Problems in Mechanics, Russian Academy of o7+ P 10ePy= 0 @
Sciences, 101-1 Prospect Vernadskogo, p=2HI(GFH)(HTF), m=GTH/VHTE,
119526 Moscow, Russia

e-mail: sergei_alexandrov@yahoo.com o0o=1(G+H), p;=o4/n;. 3

The only nontrivial equation of motion is

. . . . . . Jdoy 00y 2
The plane state of stress in an elastic-plastic rotating anisotropic (9_+ =—pwr, (4)
annular disk is studied. To incorporate the effect of anisotropy on r r
the plastic flow, Hill's quadratic orthotropic yield criterion and its wherep the density of the material. The boundary conditions are
associated flow rule are adopted. A semi-analytical solution is B B B
obtained. The solution is illustrated by numerical calculations o,=0 atr=a and r=b. ®)
showing various aspects of the influence of plastic anisotropy onat small » the entire disk is elastic. Since the elastic properties

the stress distribution in the rotating disk. are assumed to be isotropic, the general solution for stresses is
[DOI: 10.1115/1.1751183 well known (see, for exampl€g9]). Using (5) the distribution of
stresses can be found in the following form:
1 Introduction 3+v [ , ., ah®
The dependence of stress distribution on the angular velocity in o =g pwt|att b*— 2 -
rotating disks is of significant importance due to a large number of (6)
applications. The majority of the work in this area is based on the 3+ a2h? 1+3vp
assumption that the material is isotropic and obeys Tresca yield T=—g pw?| @%+b?+ ——— 37 ré
criterion with its associated flow rulesee[1] and a review in this r v

papey. A comparison of the solutions for elastic-plastic rotatingyhere v is Poisson’s ratio. Assume that yielding begins at the
solid and annular disks based on Tresca and Mises yield critefiger radius of the diskit will be verified a posterioji Then,
was given in[_2]. In particular, the difference in stress distributionysing(3) and taking into account that,>0, the angular velocity
calculated with those two criteria was discussed. The effect gf the initial yielding,w,, is obtained by substitution &B) into
yield criteria on the stress distribution and limit angular velocity)

of a rotating disk with variable thickness was also investigated in pw2b? 4y
[3]. In [4,5], the influence of temperature fields on the develop- ¢ - 1 . (7
ment of plastic zones in nonrotating thin disks was demonstrated. o0 (3+w)+(1-v)(a¥b?)

In particular, it appeared that the rise in temperature at which thelf  is higher thanw,, a plastic zone appears in the disk. The
X . : e .
entire plate became plastic was very small for various plate &g iar velocity at which the entire disk becomes plastic will be
Comtibuted by the Abplied Mechanics Division ofiE A . denoted byw, . In the rangew.<w<w, the disk consists of an
ontributed by the Applied Mechanics Division ol MERICAN SOCIETY OF  ; : ; +
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- inner plastic zone surrounded by an outer elastic zone. To find the

CHANICS. Manuscript received by the ASME Applied Mechanics Division, JanuarQiStribUtion of stre_sses in t_he pla_stic Zone, i_t_iS convenient to in-
3, 2003, final revision, October 17, 2003. Associate Editor: M.-J. Pindera. troduce the following nondimensional quantities:
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(=,

2

1 2 Cose, Y .
0.8 Z[3+V+’)/ (1*1/)]9— m 777]1+21_—’y2 +7713|n<p7
AAGOTE (14)
06 Steel DCO6 whereg , is the value ofp at =y and is a function ofy since the

solution to(10) gives ¢ as a function of3. Equation(14) should
be solved numerically to obtaipas a function of). Then,B can
be found as a function d? with the use of(13).

[sotropic material

0.4 AAS182

3 Numerical Results and Discussion

To illustrate the effect of plastic anisotropy on the development
of the plastic zone some numerical results are presented in this
section. In all cases;=1/3. The solution for the isotropic material

a is obtained as a particular case of the general solution found at
0.2 0.4 0.6 08 1 F=G=H. In Figs. 1-4, the corresponding calculations are illus-

) o . ) ) trated by dashed lines. Four sets of anisotropic coefficients are
F|'§t;}.1 1 Variation of the nondimensional guantity (wp—wo) w, considered[10,11):
i a F/(G+H)=0.243, H/(G+H)=0.703 for steel DCOB;

F/(G+H)=0.587,

0.2

Q=pw?b?o,, q=alb, B=rlb, y=clb 8) H/(G+H)=0.410 for aluminum alloy AA6016;
wherec is the radius of the elastic-plastic boundary. Equat®n F/(G+H)=0.498,
is satisfied automatically by the substitution H/(G+H)=0.419 for aluminum alloy AA5182;
o log=2 cosel\4—7?, pyloy=7ncose/A— n’+sine F/(G+H)=0.239,
©) H/(G+H)=0.301 for aluminum alloy AA3104.

whereg is a function of3. Substituting(9) into (4), with the use Note that the coefficients were measured for rolled sheets with
of (3), leads to the following ordinary differential equation for  straight principal axes of anisotropy. It is clear that the disk under
consideration cannot be made of such sheets. However, for illus-

2sing deo 2F cose ] 1 Q=0
—— sing | =—OB=0.
Va—7298 \(H+F)a—2 %8 )
(10)

The boundary condition to this equation follows frof®) at r
=a and(9) in the form

o=1l2 (112)

at B=q. The solution to(10) satisfying the boundary condition
(11) can be obtained numerically and givesas a function ofs.
This function is not monotonice attains its maximum at some
value of 8 and, then, decreases. If the entire disk is plastic, the,
¢o=ml2 at =1, as follows from(5) atr=b and(9). For a given
value of g, it is clear from (10) that ¢ depends or3 and (),
e=¢(B,Q2). Therefore, the solution to the equatiap(1,,)
=2, if it exists, gives the value of), corresponding tav, .
The variation of the nondimensional quantity(— w¢)/ we with g
is shown in Fig. 1.

Once the solution t¢10) has been found, the distribution ofjg 2 variation of the nondimensional radius of elastic-plastic
stresses in the plastic zones 8=y is given by(9) with the use boundary, 7, with Q at g=0.4
of (3). The general stress solution given [i8] is valid in the
elastic regiony<p<1. Using the boundary conditiofb) at r Ty
=b and notation(8) it may be rewritten as 0.3

0.8 Isotropic material AA3104

Steel DCO6

1.4 1.8 22 2.6

1 3+VQ )
Eil t (1-p9,

o B AA3104 AA3182

‘To_Uo
12) o2 e =

AAGOIG . .
— BZ Isotropic material

+1)+—
L 1+3v

(Tg_ B 1
- 8

ool g2

whereB is an arbitrary constant. For a given angular velocity iro.1
the rangew.<w<w, the magnitudes ofy and B can be deter-
mined from the condition of continuity of the stresses across tf
elastic-plastic boundary. AB=1, it follows from (3), (9), and
(12),
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Fig. 3 Radial stress distribution at Q=1.85 and g=0.4
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trative purposes it is possible to use the aforementioned coefbalnt-Venant Decay Rates for the

cients for characterizing the level of anisotropy at each poi ;

Figure 2 shows the variation of the radius of elastic-plastic bour:EeCtangmar Cross Section Rod

ary, vy, with ) at q=0.4. Figures 3 and 4 illustrate typical radial

and circumferential stress distributions @t=1.85 andq=0.4,

respectively. N. G. Stephe_n . . . . .
There are two main conclusions to be made. First, the qualitgchool of Engineering Sciences, Mechanical Engineering,

tive behavior of all curves is the same for anisotropic and isotrdhe University of Southampton, Highfield,

pic materials: the increase in the angular velocity fropto w, is  Southampton SO17 1BJ, UK

relatively small(Fig. 1), and it tends to be smaller for the alumi-

num alloys of lower series. This is also illustrated in Fig. 2. Seq_-, J. Wang

ond, the anisotropic plastic properties have a significant effect gw h. | of Mechanical M ials M f .

the size of the plastic zone and the stress distributiBigs. 3 and ¢ _00 0_ echanical, Materials, Manu aC?U“”Q

4). Itis expected that this effect may have an influence on residlangineering and Management, The University of

stress distributions, fatigue crack growth and other properties. Nottingham, University Park, Nottingham NG7 2RD, UK

Acknowledgments

N.A. gratefully acknowledges support from the Foundation fox finjte element-transfer matrix procedure developed for determi-
Science and TechnologdiPortugal under grant SFRH/BPD/6549/ y4tion of Saint-Venant decay rates of self-equilibrated loading at
2001. one end of a semi-infinite prismatic elastic rod of general cross
Nomenclature section, which are the eigenvalues of a single repeating cell trans-
fer matrix, is applied to the case of a rectangular cross section.
First, a characteristic length of the rod is modelled within a finite
element code; a superelement stiffness matrix relating force and
displacement components at the master nodes at the ends of the
length is then constructed, and its manipulation provides the
transfer matrix, from which the eigenvalues and eigenvectors are
determined. Over the range from plane stress to plane strain,
Which are the extremes of aspect ratio, there are always eigen-
modes which decay slower than the generalized Papkovitch-Fadle
modes, the latter being largely insensitive to aspect ratio. For
compact cross sections, close to square, the slowest decay is for a
mode having a distribution of axial displacement reminiscent of
. that associated with warping during torsion; for less compact

¢ = function ofr cross sections, slowest decay is for a mode characterized by cross-
¢, = value ofp at f=y sectional bending, caused by self-equilibrated twisting moment.

) = nondimensional parameter [DOI: 10.1115/1.1687794
® = angular velocity U )

we = angular velocity at the initial yielding
w, = angular velocity at which the entire disk becomes 1
plastic

a, b = inner and outer radii of the disk, respectively
¢ = elastic-plastic boundary
po = modified tangential stress
g = ratio of the inner to outer radius of the disk

r6z = cylindrical coordinate system
B = nondimensional polar radius
v = nondimensional radius of the elastic-plastic bounda

n, 71 = plastic anisotropic parameters
v = Poisson’s ratio
p = density of the material
o, o0y = components of the stress tensor in the cylindrical
coordinate system

Introduction

For a one-dimensional, beam-like structure, Saint-Venant's
principle (SVP) allows one to replace a known load system on one
end by a statically equivalent load distributed in a particular way
Yemanded by the elastostatic solution, known as the relaxed end
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condition. Statically equivalent implies that the resultant force an y z
moment are unchanged; the difference between the two load d A /
tributions is termed self-equilibrating and since it has no resultal
force or couple that requires reaction at some other locations
the structure, there is no reason why the associated stress
strain field should penetrate any great distance into the structu
That is the self-equilibrating load should produce only a loce
effect, which decays as one moves away from the beam end. ¢
the other hand, more often than not, the exact distribution is n
known, only the magnitude of the end load; either way, SVP i
rarely invoked consciously, yet it underpins the day-to-day appl
cation of the discipline of strength of materials. 7~

Exact elasticity solutions for these end effects are availab 2a
when the rod has a mathematically amenable boundary, such as
the solid and hollow circular cross secti¢f,2]; however, for the Fig. 1 Semi-infinite elastic rod of rectangular cross section
important case of a rod of rectangular cross section, the wegkbject to self-equilibrated load on the end ~ z=0, and repeating
known Papkovitch-Fadl&-F) modes(see, for examplg3]), ap- cell of length /.
ply only to the extremes of aspect ratio which are plane strain and
plane stress, and are subject to their inherent stress and displace-
ment assumptions, while an antiplane solutigH, assumes infi-

nite width. ) i ) environment where the manipulations to form the transfer matrix
Toupin [5] provided the first proof of SVP in 1965, and thereynq getermination of the eigenvalues are readily accomplished.
has been extensive research since that time, with reviews haVK‘&:uracy of the method was established[8] by comparison
been provided by Horgan and Knowl¢§-8]. Toupin argued that \yith the decay rate predictions from a selection of the stock of
attempts to calculate decay rates are mmgrfsistent with the spirit exact elasticity solutions, and found to be excellent. The theory

of the principle, and the way it is used. After all, if one carhehing the method was described fully[Bi, and is not repeated
construct, or is willing to construct solutions, there is no need fofq e

the principle” A counter view is that a knowledge of the mini-
mum decay rate for a particular structure defines the extent of the
region where a calculated stress may be in error. In a recent paper,
[9], the present authors described a numerical procedure which _. . .
allowed [t)he determination of the Saint-Venant dgcay rates fo Finite Element Modelling of the Cell

semi-infinite elastic rod of arbitrary cross section subjected to Figure 1 shows a typical repeating cell of the rod having width
self-equilibrated loading at one end. This procedure is, in turn,2a, depth 2 and lengthl.. For numerical purposes we take
development of a transfer matrix meth¢dQ], in which the decay andl. as equal to unity, when the calculated decay rates, over the
rates and equivalent continuum beam properties of a repetitisange of aspect ratioa/b=1/20—40, are a multiple of the rod
pin-jointed framework, consisting of a series of identical cells, casemi-depttb. The modelling data are given in Table 1; in all cases
be calculated. Nodal displacements and forces on either side26fFnode isoperimetric elements were used and Poisson’s ratio was
the generic cell form state vectors which are related by meanstaken to be 0.25. The large dimension of the transfer matrix, for
a transfer matrix, the latter being determined from a knowledge ekample 57&576 in the case of the square cross section, in turn
the cell stiffness matrix; on account of translational symmetrigads to a large number of possible decay modes; 12 of the eigen-
consecutive state vectors are related by a constant mukijglee  values are equal to unity and these pertain to the six rigid body
decay factor, which leads directly to a standard eigenvalue pradisplacements, and the six transmission modes of tension, torsion,
lem. For the continuum elastic beam of arbitrary cross section, taed shear and bending in two planes. The remaining eigenvalues
beam is first regarded as a series of identical cells of a charactereur as reciprocal pair&he transfer matrix being sympleckic
istic length, related to some cross-sectional dimension; the stiffecording to whether decay is from left to right, or vice versa,
ness matrix of one such cell is constructed using a finite elememhich leads to the prediction of 282 distinct left to right decay
code, such as ANSYS. Since displacement and force componemtzdes. Of these, the most importdahd the most accuratare

are required only for master nodes at the ends of the cell, #llose which provide the slowe&patially) rates of decay; thus for
others are treated as slave nodes. This condensation creates ghgusquare cross section, only the first ten decay rates are pre-
perelement stiffness matrix, which is imported into a MATLABsented, allowing some classification into families of decay modes.

A 4
=

Table 1 Finite element modeling data of rectangular crosssection of characteristic length, Ie
Aspect ratio Division of Division of Number of Nodes in Size of transer

a/b 2aXx2b length, I . elements cross-section matrix

1/20 48 10 320 121 728726

1/10 4x8 10 320 121 728726

1/4 3%x8 5 120 95 57570

1/2 3%x8 5 120 95 57&570

2/3 4X6 5 120 93 558558

4/5 4x6 5 120 93 55&558

1 5X5 5 125 96 57&576

5/4 6x4 5 120 93 55&558

3/2 6x4 5 120 93 558558

2 8%3 5 120 95 57570

4 8x3 5 120 95 57570

10 8x4 5 160 121 728726

20 8x4 5 160 121 728726

40 8x4 5 160 121 728726
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as those which provide the smallest decay rateafbr 4/5; thus
consider the dual relationship between the decay rates for the two
casesa/b=2/3 anda/b=23/2; physically the bars are identical,
the difference being an interchange of the coordinate axes and, by
/ implication, the dimensiona andb. The slowest decay rate for
a/b=2/3 is kb=2.0420, when stress decays as
exp(—2.042@&/b) =exp(—1.361%/a), which is the smallest de-
cay rate fora/b=3/2, albeit witha andb reversed; generalization
of this result is straightforward for other aspect ratios. For any

v particular aspect ratia/b<<1, a dual decay rate may be found by
( simply multiplying by the aspect ratio: thus an entry &olh=4
can be found from the decay rate fotb=1/4, and multiplying by
1/4; for example, 1.49961/4=0.3749. Indeed, in Table 2, with

the exception of those entries below the sympalvhich denotes
b that some decay rates have not been entered, every decay mode
for a/b<<1 has a dual foa/b>1 on the same row.

Compared to the general rectangle, which is symmetric about
the coordinate axes, the square cross section is, in addition, sym-
metric about the two diagonals; in turn the decay rates can occur
as single eigenvalues, or as pairs, according tddajsymmetry of
the displacement field. For the slowest bi-moment moklb (

. . =1.6639-0.5717) both the axial displacemem, and the cross-
3 Results and Discussion sectional displacements, andv, are symmetric with respect to

The slowest decay rate predictions are shown in Table 2, tiae diagonals, and asymmetric with respect toxlaady-axes; in
ascending magnitude of the real part which governs the rate asinsequence a single root, and a single eigenvédemay modg
decay; thus the first row pertains to self-equilibrated loading thatffices. On the other hand, repeated decay rates occur for sym-
will penetrate the greatest distance into the structure. Exact decagtric cross-sectional bending (2.547@.9238) and the asym-
rates are available only at the extremes of aspect ratio, for generetric P-F mode (3.79701.3876), but not for the asymmetric
alized plane stressa(b—0) and plane straina/b—=) when cross-sectional bending, or symmetric P-F modes. The single

stress decays exponentially from one end as €kg(, wherek roots ata/b=1 show(a)symmetries, as follows:
are the roots of the well-known Papkovitch-Fadl@-F
(1.6639:0.5717)

eigenequatiorisee[ 3], article 26

A 4
=

Fig. 2 Self-equilibrated twisting moment on the end z=0;
aspect ratio a/b<1

u, v andw are symmetric about both
diagonals, asymmetric about both
coordinate axes

u, v andw are asymmetric about both
diagonals and coordinate axes
4.0408 u, v andw are asymmetric about both
diagonals and coordinate axes

u, v andw are symmetric about both
diagonals and coordinate axes

u, v andw are symmetric about

sin 2kb=+ 2kb=0; (1) (3.8804-1.3623)

the two smallest roots ar&b=2.1062+1.1254, kb=5.3563
+1.5516 for the positive sign in Eq(l), which is the symmetric (2.2391+1.1072)
case, andkb=3.7488+1.3843, kb=6.9500+-1.6761 for the
negative sign, the asymmetric case. In the case of antiplane str&ih9917+ 1.1546)
[4], decay from the loaded edge is as expfz/2b), wheren is both coordinate axes, asymmetric
an integer, implying a slowest decay given by the robt 7/2; about the diagonals
these exact decay rates are shown in the first column The shatfeéach case, there ata)symmetries for each of the three
entries in Table 2 are those that, by virtue of similarity of thelisplacement components.
displacement field, are closest to these known exact solutions, an¢h contrast the modes pertaining to the double roots show a less
are here regarded as generalized P-F or generalized shear magiegeloped pattern di)symmetry; for example,

First, it is noted that the decay rates of the generalized P-F )
modes appear largely insensitive to aspect ratio; thus for the caté$474-0.9238) one mode has andv symmetric about
a/b=<2/3, the real part of the slowest generalized symmetric P-F the y-axis, asymmetric about )
mode exceeds that of the exact plane stress (@1€62 by less the x-axis, no(a)symmetries about diagonal;
than 0.1%, and for/b=4/5 it is less than the plane stress value W no (a)symmetries; the
by 0.5%. The maximum deviation occurs for the square cross other mode hasv symmetric about the
section,a/b=1, at less thant+7%. For the slowest asymmetric x-axis, asymmetric about the
generalized P-F mode, the real part exceeds the plane stress value axis, no(a)symmetries about diagonals;
(3.7489 by less than 3% foa/b<1. uandv show no

For all aspect ratios considered, there is at least one mode (a)symmetries

decays slower than the generalized P-F modes.afbs 1, the
mode associated with the real root is characterized by a bending
of the cross section due to self-equilibrated twisting moment in

the xy-plane, as depicted in Fig. 2. The mode associated with the
complex root is characterized by an axial warping displacement
field reminiscent of Saint-Venant torsion, and hence a stress field
associated with the restraint of torsional warpihgre referred to

as the bi-moment mogle

tg.a}970t 1.3876  one mode hasv symmetric about

one diagonal, asymmetric about the
other;u andv show no(a)symmetries;
the other mode hag andv

asymmetric about thg-axis, symmetric
about they-axis; w shows no
(a)symmetries.

For the casea/b>5/4, Table 2, there are an increasing numbédfow there is planafa)symmetry in respect af ando, or ()sym-
of modes which decay slower than the slowest P-F modes; agaietries for the axial displacemewnt but not both. Thus it appears
the smallest of these modes is characterized by cross-sectidhal the occurrence, or otherwise, of a double decay mode depends
bending, but in fact they are physically the same modes of decay the degree ofa)symmetry in the displacement field.
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Finally, we note in Tald 2 a decay rate which approaches th€)n Source-Limited Dislocations in

slowest antiplane strain shear decay ratklof /2, with an error . .
of less than 0.6% whea/b=10. Nanoindentation

4 Concluding Remarks M. X. Shi

For the rectangular cross section, there are always eigenmo ; ; ;
that decay slower than the Papkovitch-FadeF) modes; typi- %Partment of .Th(.aoretlcal and Applied .MeChamcs’
cally these are modes characterized by a bending of the cr(%g'vers'ty of lllinois at Urbana-Champaign,
section, which would be precluded by plane stress/plane stra#ibana, IL 61801
assumptions. The exception is for a compact cross section, that is,
close to being square, when slowest decay is for a mode assc)(&,i-Huangl

ated with a bi-moment. However, the P-F modes remain impo”@bpartment of Mechanical and Industrial Engineering,

as a means of classification of the various decay modes. : . . .
In discussing the decay rates, attention has focused on the sl L&&pversny of lllinais at Urbana-Champaign,

est, as it is these which validate Saint-Venant's principle; for tHdfbana, IL 61801

square cross section, the slowest Saint-Venant decay is €agnail: huang9@uiuc.edu

exp(—1.663%/b) =exp(—4.706Z/d) whered=2,2b is the sec-

tion diagonal, which is the greatest linear dimension of the cros#. Lj

section; this implie_s that stress level reduces tq Ie;s t.han l%AJIfcoa Technical Center, Alcoa Center, PA 15069
free end value at distan@=d from the free end, indicating that

SVP is clearly applicable. On the other hand, at first sight a vew

small decay rate, such ab=0.0648 for aspect ratia/b= 20, . C. Hwang

Table 2, might suggest that SVP is inapplicable; indeed the strdagpartment of Engineering Mechanics,

level only reduces to 87.8% of its free end value at distanceTsinghua University, Beijing 100084, P.R. China
=2b (that is, distance X plate thicknessfrom the free end. How-

ever, if the decay characteristic is expressed in terms of multiples

of the diagonald=2./401b, decay is as exp{2.5952/d). This

implies stress reduction to less than 7.5% at distaned from The discrete dislocation model is used in this note to investigate

more importantly, the sense in which SVP is understood, is
terms of multiples of the cross section greatest linear dimensi
which is dominated by plate widtha2for this aspect ratio.

dislocation source distribution[DOI: 10.1115/1.1751185

1 Introduction

Nomenclature Nanoindentation has become a major experimental technique to
probe the mechanical properties of materials at the nanoscale,

a, b = semi-width and semi-depth of rectangular cross ! i ) i C i
P g [1,2]. Dislocation glide underneath the nanoindenter is identified

section
d = greatest linear dimension of cross section as the key mechanism of plastic deformation in nanoindentation,
(d=2a%+ b?) [3,4]. Dislocation loops are observed near the edge of the nanoin-
i = (—1)12 denter[4]. The quasi-continuum analys[$], shows that disloca-

tions are indeed generated right underneath the corner of the rect-
angular indenter and then moved into the bulk material. In this
note we present a discrete dislocation analysis to investigate the
effect of dislocation source distribution in nanoindentation, par-
ticularly the source-limited dislocation generation and glide.,

very few sources for dislocation generatioRollowing Shi et al.

[6], we modify the two-dimensional discrete dislocation model of
van der Giessen, Needleman and co-workgts|, for the equi-
librium dislocation analysis by requiring that the glide component
References of the Peach-Koehler force on each dislocation vanishes at each

[1] Klemm, R. L., and Little, R. W., 1970, “The Semi-Infinite Elastic Cylinder time step.
Under Self-Equilibrated End Loading,” SIANSoc. Ind. Appl. Math.J. Appl.

Math., 19, pp. 712-719. A . . . .
[2] Stephen, N. G., and Wang, M. Z., 1992, “Decay Rates for the Hollow Circulaz EqU|I|br|um AnaIyS|s of Discrete Dislocations

Cylinder,” ASME J. Appl. Mech. 59, pp. 747-753. R i
[3] Timoshenko, S. P., and Goodier, J. N., 19T@gory of Elasticity Third Ed., We study a region of 4umx2 um subject to pressure on the

i
k = decay rate K=In\)
|, = characteristic length
u, v, w = displacement components in tkgy, and
z-directions
X, ¥, z = Cartesian coordinates
decay factor, eigenvalue of transfer matrix

>
Il

McGraw-Hill, New York, Art. 26. top surface over a zone of 0m. The Young’'s modulus is 70
[4] Shun, Cheng, 1979, “Elasticity Theory of Plates and a Refined TheoryGPa, and Poisson’s ratio is 0.33. Figure 1 shows the symmetric,
ASME J. Appl. Mech. 46, pp. 644-650. right-half region(2 umx2 um). The symmetry or traction-free
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| | Fig. 2 The applied pressure (normalized by the Young's
] 2um | modulus ) versus the indentation depth for the 2~ umX2 um re-
gion in Fig. 1 with 6, 18, 53, and 160 slip planes
Fig. 1 Random distribution of dislocation sources (open

circles ) and obstacles (solid circles ) on slip planes (dashed

lines). There are 18 slip planes in the 2 mX2 um region, with . . . . . .
3 disl)ocation sources aﬁdpll obstacles on é;ch sligplang. The Dislocation annihilation is also accounted for. Two dislocations

pressure is applied over a region of 0.4  um on the top surface. ~ With opposite Burgers vectors on the same slip plane annihilate
when their spacing is less thar 6
The same approach of van der Giessen, Needleman, and co-
workers,[7,8], is used to decompose the problem ifitpan ana-
pressure in the finite loading regid©.4 um) to represent the lytic solution for dislocations in an infinite solid, ari@) a finite
indentation. The bottom surface is also subject to boundary caement solution for a dislocation-free solid with finite bound-
dition u,=0. aries. The finite element method can handle the second problem
The right-half region in Fig. 1 contains 18 slip planes with theery effectively since it does not involve any singularitigs,g].
slip plane spacing 112.5 nm. We have chosen the slip planes gdewever, Our analysis is different in that all dislocations reach
allel to the direction of pressur@n the top surfadesince these equilibrium within each time increment, though they may exit the
slip planes allow dislocations to move downward, which is corgolid (from the top surface or be pinned at obstacles. The dislo-
sistent with that observed by Tadmor et[&]. Initially, the solid ~cation positions are solved iteratively within each time increment
is assumed to be free of mobile dislocations, but to contain uatil the glide component of the Peach-Koehler force vanishes for
random distribution of dislocation sources and point obstaclegvery dislocation[6].
The sources mimic Frank-Read sources and generate a dislocation
dipole when the Peach-Koehler force exceeds a critical valu®@, Results

[6-8]. The obstacles, which could be small precipitates or forGStFigure 1 also shows the dislocation distribution on all 18 slip

of dislocations, pin dislocations and will release them once th : . . \
Peach-Koehler force attains the obstacle strerf/@thg]. p‘?anes in the solid at the pressure 0.&l, 2vhereE is the Young’s

There are three sources for dislocation generatinarked by modulus. The distance between the end of loading region and the
open circles randomly distributed on each slip plane, and theflS2/€st slip plane is 6.25 nm. It is clearly observed that most
strength follows a normal distribution with the mean strengt |slqcat|ons_ are g(_ant_arated on the ?"p plane closest to t_he end of
Tnuc=50MPa and standard deviation 8@c=10 MPa. Once oading region. This is due to the high stress concentration at the

NUC™ - .

e Gice componen o e Peach Koehir Torce exceadpb £r o 02013 BNl 1 fect the poma sese i he drec,
over timetyyc=0.01us, a dislocation dipole is generatéf-8. perp pp P Y

Hereb=0.25 nm is the length of the Burgers vector, and the glio‘;eﬂd of loading region[,9]. The pattern of dislocation distribution

component of the Peach-Koehler force on Kté dislocation is own in Fig. 1 IS similar to the patterns observed in the quasi-
given by continuum analysig,5], and experimentg3,4].

In order to examine the effect of dislocation source distribution
in nanoindentation, we have also studied the same re@on
fX=nK.o.bK, (1) umx2 um) with 6, 53, and 160 slip planes. The slip plane spac-
ings are 337.5 nm, 37.5 nm, and 12.5 nm, respectively. The size of
loading region remains the san@4 um). The number of dislo-
wherenX is the slip plane normahX is the Burgers vector of the cation sources and obstacles also remain the same on each slip
Kth dislocation andr is the stress field excluding the contributionplane(3 and 10, respectivelybut the total number of dislocation
from the Kth dislocation itself. sources and obstacles for 6, 53, and 160 slip planes are approxi-
There are ten obstaclésarked by solid circlesrandomly dis- mately 1/3, 3, and 9 times of those shown in Fig. 1 for 18 slip
tributed on each slip plane, with the obstacle strengfas planes. The distance between the end of loading region and the
=150 MPa. When a dislocation meets an obstacle, it is pinnedriearest slip plane is 106.25 nm for the solid with 6 slip planes,
this obstacle until the glide component of the Peach-Koehler foraeed this distance becomes 6.25 nm for 18, 53, and 160 slip planes.
given in (1) exceedsrogd. On each slip plane there is an addiFigure 2 shows the applied pressure normalized by the Young’s
tional obstacle very close to the bottom surface with very largeodulus versus the indentation depth for above four sets of slip
obstacle strength in order to prevent dislocations from exiting thpdanes, where the indentation depth is the maximum normal dis-
bottom surface. This represerit@ mimic9 the effect of a hard placementunder the pressurat the symmetry line. It is clearly
substrate that blocks dislocations at the film/substrate interfacdserved that the curves for 18, 53, and 160 slip planes are essen-
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