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Discontinuities in the Sensitivity Curves
of Laminated Cylindrical Shells

Yiska Goldfeld
Research Scientist

Izhak Sheinman
Professor Faculty of Civil Engineering, Technion–Israel
Institute of Technology, 32000 Haifa, Israel

The discontinuity in the sensitivity of laminated cylindrical she
is investigated via the initial post-buckling analysis. A gene
procedure for sensitivity, based on Koiter’s parameters and us
the Donnell and Sanders shell theories, is developed and use
parametric study of the discontinuity phenomenon. It was fo
that the discontinuity occurs at points of change of the circum
ential wave number.@DOI: 10.1115/1.1748341#

Introduction
Shell-like structures are very sensitive to initial geometry i

perfections. One of the main goals, in this field, is to find t
various parameters that influence the shell’s sensitivity, ther
improving the behavior of the whole structure.

In the present note the characteristic behavior of the imper
tion sensitivity is investigated on the aid of Koiter’s asympto
theory, @1#. Koiter showed that the imperfection sensitivity of
structure is related to its initial post-buckling behavior, In oth
words, it is governed by the immediate slope at the bifurcat
point: if the latter is negative, the real buckling load will be le
than the theoretical one and the shell is sensitive. Accordin
fewer parameters are needed for characterizing the sensitivity
havior.

Here, the sensitivity curves of an isotropic and laminated cy
drical shell are studied in terms of the circumferential wave nu
ber ~CWN!. It was found,@2,3#, that discontinuities always occu
at points where the CWN is changed, and in the present note t
points are sought.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Augu
12, 2002; final revision, October 25, 2003. Associate Editor: T. E. Triantifyllides
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Governing Equations
The governing equations are derived for the Donnell,@4#, and

Sanders,@5#, kinematic relations,@6#. They are obtained via the
variational principle for laminated cylindrical shell. Formulatio
of the two approaches is based on the displacement componen
the axial (u), circumferential (v), and normal~w! directions.

The equilibrium equations read:

Nxx,x1
Nxu,u

R
50

Nxu,x1
Nuu,u

R
1dFM uu,u

R2 1
Mxu,x

R
1

Nuu

R2 ~w,u2v !

2z
Nuu

R2 ~w,u2v !1
Nxu

R
w,xG50

Mxx,xx1
2Mxu,xu

R
1

M uu,uu

R2 2
Nuu

R
1~Nxxw,x! ,x1

~Nuuw,u! ,u

R2

1
~Nxuw,x! ,u

R
1

~Nxuw,u! ,x

R
2dF ~Nuuv ! ,u

R2 1
~Nxuv ! ,x

R G1qzz

50 (1)

with the following boundary conditions:

u or Nxx

v or Nxu1d
Mxu

R

w or Mxx,x1
2Mxu,u

R
1Nxxw,x1

Nxuw,u

R
2d

Nxuv
R

w,x or Mxx (2)

where
d50 for Donnell’s kinematic relations
d51 for Sanders’ kinematic relations.

z is a correction factor for the second theory (d51) in the
hydrostatic load case,@7,8#: z50 when the load remains paralle
to its original, andz51 when the load remains normal to th
deflected reference axis. The difference between the two vers
is most pronounced for thin rings.
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Initial Post-buckling
The imperfection sensitivity parameters determine whether

load increases or decreases after buckling. Accordingly, the
placement, strain and stress vectors are expanded according
following scheme:

H u
v
w
J 5lH u~0!

v ~0!

w~0!
J 1jH u~1!

v ~1!

w~1!
J 1j2H u~2!

v ~2!

w~2!
J 1 . . . . (3)

The load parameterl representing the deviation from the classic
buckling loadlc , and j being the perturbation parameter. Th
superscripts(0), (1) and (2) denote the prebuckling, buckling, an
initial post-buckling states, respectively.

Applying the variational principle following Budiansky an
Hutchinson,@9,10#, the load parameter is obtained as

Fig. 1 Sensitivity b parameter versus Batdorf Z-parameter for
simply supported „NxxÄNx uÄ0… cylindrical shell under hydro-
static pressure

Fig. 2 Hydrostatic buckling load and sensitivity b parameter
versus angle ply for simply supported „NxxÄvÄ0… cylindrical
shell with l ÕRÄ3
Journal of Applied Mechanics
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Fig. 3 Hydrostatic buckling load and sensitivity b parameter
versus angle ply for simply supported „NxxÄvÄ0… cylindrical
shell with l ÕRÄ10

Fig. 4 „a… Axial buckling load and circumferential wave num-
ber versus angle ply for simply supported „vÄ0… cylindrical
shell with l ÕRÄ3 „b… Sensitivity a and b parameters versus
angle ply for simply supported „vÄ0… cylindrical shell with
l ÕRÄ3
MAY 2004, Vol. 71 Õ 419
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511aj1bj21¯ (4)

where a and b are known as the Koiter parameters. For isotr
cylindrical shells the coefficient a vanishes due to the periodi
of the buckling mode in the circumferential direction, but for
laminated cylindrical shell under axial compression it was fou
that it does not. As for the coefficient b a positive value indicates
that the shell is insensitive, a negative value measures the lev
sensitivity. For the linear prebuckling state Budiansky and Hut
inson derived the well-known formulas:

a52
3s1•L2~u1!

2lcs0•L2~u1!
(5)

b52
s2•L2~u1!12s1•L11~u1 ,u2!

lcs0•L2~u1!
. (6)

In terms of the displacement components the operator is writte

s i•L11~uj ,uk!5E
a

bE
0

2pH Nxx
~ i !@w,x

~ j !w,x
~k!#1Nuu

~ i !Fw,u
~ j !w,u

~k!

R2

2
d

R2 ~v ~ j !w,u
~k!1v ~k!w,u

~ j !!G
12Nxu

~ i !Fw,x
~ j !w,u

~k!

2R
1

w,x
~k!w,u

~ j !

2R
2

d

2R
~v ~ j !w,x

~k!

1v ~k!w,x
~ j !!G J dudx i, j ,k

50,1,2 (7)

The superscripts~i!, ~j!, and~k! denote the relevant state as abov
These equations are solved through expansion of the depen

variables in Fourier series in the circumferential direction and
finite differences in the axial direction. Afterwards the Galerk
procedure is used to minimize the error due to the truncated f
of the series.

Parametric Study
In order to locate the discontinuities in the sensitivity curv

one must first find the critical CWN which yields the minimu
buckling load; a change in the wave number causes a discon
ity in the slope of the buckling curve. After that, one must calc
late Koiter’s sensitivity parameters~Eqs. ~5! and ~6!!, using the
critical buckling load and its associated wave number, here ag
the sensitivity curve is characterized by a discontinuity, but unl
the buckling curves the discontinuity occurs in the curve itsel

For this purpose isotropic cylindrical shells and laminated tw
ply ~6a! angle-ply cylindrical shells under hydrostatic and ax
loading are considered, reproduced from Sheinman and Gold
@6#.

Hydrostatic Pressure. In the first case Budiansky an
Amazigo’s,@11#, simply supported isotropic cylindrical shell wa
reproduced here. At their work there was no consideration to
varying CWN and the sensitivity curve was continuous. Here,
Fig. 1, it is seen that the b parameter is highly dependent on
CWN and acquires a discontinuity on a change in the latter. T
not only the critical buckling load characterized by transaction
the CWN is dependent on the BatdorfZ-parameter, but the b
420 Õ Vol. 71, MAY 2004
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parameter~Eq. 6! as well. It is worth noting that in this exampl
Donnell’s and Sanders’ theories yield the same values.

In the second case~laminated cylindrical shell! the buckling
load and the b are plotted against the angle-ply~6a! in Figs. 2
and 3 forl /R53 and 10, respectively. It is seen that both of the
likewise highly dependent on the CWN, and the b parameter
quires a discontinuity as in the first case. It is found that the ini
circumferential internal force, Nuu affects it most.

Furthermore, it is seen that the buckling load and the sensiti
are also highly dependent on the angle ply. Regarding the se
tivity level, it is seen that the angle ply has the same effect a
stringer, namely, as it increases so does the buckling load w
the sensitivity decreases.

The different between Sanders’ and Donnell’s shell theorie
insignificant for buckling load but still Sanders’ yield lower va
ues, and quite pronounced for the b parameter; the more acc
the theory~Sanders!, the lower the sensitivity and the bucklin
load.

Axial Compression. The axial buckling load~applied by set-
ting Nxx5N̄xx at one edge!, the CWN, the a and b parameters a
plotted againset the angle ply~6a! in Fig. 4 according to Don-
nell’s theory. Here, again, the discontinuities occur at points wh
the CWN changes, both in the b parameter and in the slope o
buckling-load curve~at 6a562° the transition is most pro
nounced, from CWN51 to CWN57).

Unlike its isotropic counter part, for the laminated cylindric
shell the a parameter does not necessarily vanish: for CWN50
~axisymmetric buckling mode!, the sensitivity is characterized b
the asymmetric a parameter and while for CWNÞ0 it is charac-
terized by the b parameter.

Conclusions
From the results the following conclusions can be drawn:

• Discontinuities in the b parameter always occur at poi
where the critical circumferential wave number changes.

• Where the sensitivity a parameter is not zero, the sensitivi
parameter vanishes, and vice versa.

• The angle ply has, in some cases, the same effect as a str
configuration: as it increases does the buckling load, wh
the sensitivity decreases.
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A Combined Fourier Series–Galerkin
Method for the Analysis of
Functionally Graded Beams

H. Zhu
Graduate Student

B. V. Sankar
Professor,
Fellow ASME

Department of Mechanical and Aerospace Engineering
University of Florida, Gainesville, FL 32611-6250

The method of Fourier analysis is combined with the Galer
method for solving the two-dimensional elasticity equations fo
functionally graded beam subjected to transverse loads.
variation of the Young’s modulus through the thickness is given
a polynomial in the thickness coordinate and the Poisson’s rati
assumed to be constant. The Fourier series method is use
reduce the partial differential equations to a pair of ordinary d
ferential equations, which are solved using the Galerkin meth
Results for bending stresses and transverse shear stresses in
ous beams show excellent agreement with available exact s
tions. The method will be useful in analyzing functionally grad
structures with arbitrary variation of properties
@DOI: 10.1115/1.1751184#

Introduction
Functionally graded materials~FGMs! possess properties tha

vary gradually with location within the material. FGMs diffe
from composites wherein the volume fraction of the inclusion
uniform throughout the composite. The closest analogies of FG
are laminated composites, but the latter possess distinct interf
across which properties change abruptly. Suresh and Morte
@1# provide an excellent introduction to the fundamentals
FGMs. As the use of FGMs increases, for example, in aerosp
automotive, and biomedical applications, new methodologies h
to be developed to characterize FGMs, and also to design
analyze structural components made of these materials. Fo
ample, Pindera and Dunn@2# developed a higher order microme
chanical theory for FGMs~HOTFGM! that explicitly couples the
local and global effects. Delale and Erdogan@3# derived the crack-
tip stress fields for an inhomogeneous cracked body with cons
Poisson ratio and with a shear modulus variation given bym
5m0e(ax1by). In general the analytical methods should be su
that they can be incorporated into available methods with the l
amount of modifications, if any. One such problem is that of
sponse of FGMs to thermomechanical loads. Although FGMs
highly heterogeneous, it will be useful to idealize them as c
tinua with properties changing smoothly with respect to the spa
coordinates. This will enable obtaining closed-form solutions
some fundamental solid mechanics problems, and also will he
developing finite element models of the structures made of FG

In a series of papers Sankar and his co-workers,@4–7#, reported
analytical methods for the thermomechanical and contact ana
of FGM beams and also for sandwich beams with FG cores
these studies the thermomechanical properties of the FGM w

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July
2002, final revision, December 5, 2003. Associate Editor: R. R. C. Benson.
Copyright © 2Journal of Applied Mechanics

loaded 22 May 2009 to 128.227.7.57. Redistribution subject to ASME lic
in
r a
he
by
is

d to
f-
od.
vari-
olu-
ed

t
r
is
Ms
aces
sen
of
ace,
ave
and
ex-

-

tant

ch
ast
e-
are
n-
tial
to

p in
s.

ysis
In
ere

assumed to vary through the thickness in an exponential fash
e.g., E(z)5E0elz. The material was assumed to be isotropic
every point and the Poisson’s ratio was assumed to be con
everywhere. This assumption enabled them to obtain analy
solutions using Fourier expansion methods. However, in prac
the properties of FGM will vary in an arbitrary fashion and th
aforementioned solution technique may not be useful. In
present paper we assume that the property variation through
thickness can be expressed in the form of a polynomial in thz
coordinate. We demonstrate the application of both Fourier se
and Galerkin methods for obtaining an approximate solution
displacements and stresses in a FG beam. The solutions are
pared with available exact solutions and the agreement is foun
be very good.

Analysis
Consider a functionally graded~FG! beam of heighth and

lengthL as shown in Fig. 1. The beam and the loading are sy
metric about the center linex5L/2. The beam is assumed to be
a state of plane strain normal to thex-z plane.

The transverse loadpz(x) acting on the beam can be repr
sented by a Fourier series as

szz~x,0!52pz~x!52pn sinjx (1a)

where j5np/L, n51,3,5 . . . and Fourier coefficientspn are
given by

pn5
2

L E0

L

pz~x!sinjxdx. (1b)

We will demonstrate the solution method for the loadpn sinjx in
this note. Then the traction boundary condition on the bott
surface of the beam is given by

szz~x,0!52pn sinjx, txz50. (1c)

Sincen is odd, the load is also symmetric about the centerli
The boundary conditions are similar to that of a simply suppor
beam, but the actual boundary conditions will become clear la

We assume that the FGM is isotropic at every point and
Poisson’s ratiov is a constant through the thickness. The variati
of Young’s modulusE in the thickness direction is given by
polynomial inz as

E~z!5E0S a11a2S z

hD1a3S z

hD 2

1a4S z

hD 3D (2)

whereE0 is the Young’s modulus atz50, anda1 , a2 , a3 , anda4
are material constants.

The differential equations of equilibrium are

]sxx

]x
1

]txz

]z
50

(3)
]txz

]x
1

]szz

]z
50.

Assuming that the principal material directions coincide with thx
andz-axes, the constitutive equations are

H sxx

szz

txz

J 5F c11 c13 0

c13 c33 0

0 0 c55

G H «xx

«zz

gxz

J (4)

or

s5C«.

The elasticity matrix@C# is related to material constants by
1,
004 by ASME MAY 2004, Vol. 71 Õ 421
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E11

2n13

E11
0

2n13

E11

1

E33
0

0 0
1

G13

D . (5)

We assume the solution for displacements as

u~x,z!5U~z!cosjx
(6)

w~x,z!5W~z!sinjx

Substituting Eq.~6! into ~4!, we obtain

S sxx

szz

txz

D 5S c11 c13 0

c13 c33 0

0 0 G
D S 2jU sinjx

W8 sinjx
~U81jW!cosjx

D . (7)

The prime~8! after a variable denotes differentiation with respe
to z. With Eqs.~6! and ~7!, one can state that the boundary co
ditions of the beam atx50 andx5L arew(0,z)5w(L,z)50 and
sxx(0,z)5sxx(L,z)50, which corresponds to simply suppo
conditions in the context of beam theory. Equations~7! can be
written as

S sxx

szz
D5S Sx

Sz
D sinjx

(8)
txz5Tz cosjx

where

S Sx

Sz
D5S c11 c13

c13 c33
D S 2jU

W8 D
(9)

Tz5G~U81jW!.

Substituting forsxx , szz, txz from Eqs.~7! into equilibrium Eqs.
~3!, we obtain a set of ordinary differential equations inU(z) and
W(z):

jSx1Tz850
(10)

Sz82Tzj50.

In order to solve Eqs.~10! we employ the Galerkin method. W
assume solutions of the form

U~z!5c1f1~z!1c2f2~z!1c3f3~z!1c4f4~z!
(11)

W~z!5b1f1~z!1b2f2~z!1b3f3~z!1b4f4~z!

wherefs are basis functions, andbs andcs are coefficients to be
determined. For simplicity we choose 1,z, z2, z3 as basis func-
tions. That is,

f1~z!51; f2~z!5z; f3~z!5z2; f4~z!5z3. (12)

Fig. 1 A FGM beam subjected to symmetric transverse load-
ing
422 Õ Vol. 71, MAY 2004
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Substituting the approximate solution in the governing differen
equations, we obtain the residuals. The residuals are minimize
equating their weighted averages to zero:

E
0

h

~jSx1Tz8!f i~z!dz50, i 51,4

(13)

E
0

h

~Sz82Tzj!f i~z!dz50, i 51,4.

Using integration by parts we can rewrite Eqs.~13! as

E
0

h

f ijSxdz1Tz~h!f i~h!2Tz~0!f i~0!2E
0

h

Tzf i8dz50

i 51,4
(14)

E
0

h

Szf i8dz1E
0

h

Tzjf idz2~Sz~h!f i~h!2Sz~0!f i~0!!50

i 51,4.

Substituting forSx(z), Sz(z), andTz(z) from Eqs.~9! into ~14!
and using the approximate solution forU(z) andW(z) in ~11! we
obtain

S Ki j
~1! Ki j

~2!

Ki j
~3! Ki j

~4!D S b
cD5S f i

~1!

f i
~2!D (15)

where

Ki j
~1!5jE

0

h

c13f if j8dz2jE
0

h

Gf i8f jdz

Ki j
~2!52E

0

h

Gf i8f j8dz2j2E
0

h

c11f if jdz

Ki j
~3!52j2E

0

h

Gf if jdz2E
0

h

c33f i8f j8dz

Ki j
~4!5jE

0

h

c13f i8f jdz2jE
0

h

Gf if j8dz (16)

f i
~1!5f i~0!Tz~0!2f i~h!Tz~h!

f i
~2!5f i~0!Sz~0!2f i~h!Sz~h!

S b
cD T

5~b1 b2 b3 b4 c1 c2 c3 c4!.

Traction boundary conditions on the top and bottom surfaces
beam are

txz~x,0!50

txz~x,h!50
(17)

szz~x,0!52pn sinjx

szz~x,h!50.

In terms ofSz andTz , the boundary conditions take the form

Tz~0!5Tz~h!50

Sz~0!52pn (18)

Sz~h!50.

Equations~18! can be used to evaluatef i
(1) and f i

(2) in ~16! which
are the right-hand side of Eq.~15!. Solving Eq.~15!, we obtain the
solutions for the coefficientsbi andci , which yield the approxi-
mate solutions forU(z) andW(z) in ~11!. OnceU(z) andW(z)
are determined, stress at any point can be computed using Eq~8!
and ~9!.
Transactions of the ASME
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Results and Discussion
In order to verify the present method examples from@1# are

used. In these examples the variation of Young’s modulus is
sumed to be of the formE5E0elz/h. The same variation can b
approximated by the polynomial form given in Eq.~2!. The coef-
ficients of the polynomial,a1 , . . .a4 were determined by using
the least squares curve fitting. Two types of beams were con
ered, and the variation of Young’s modulus in these beams
given by Eh /E0510 andEh /E050.1, respectively. In the firs
beam the load is applied on the softer face of the beam and in
second on the harder side. In both casesE0 was taken as 1 GPa
andn50.25. The thickness of the beam ish510 mm. The coef-
ficients of the cubic polynomial forE(z) are given in Table 1.

The results for the normalized bending stress for various va
of jh5np/L are presented in Figs. 2 and 3. It should be no

Fig. 2 Normalized axial stress sxx through the thickness of
FGM beam for EhÄ10 E0 . The exact solution and that of Galer-
kin method are indistinguishable.

Fig. 3 Normalized axial stress sxx through the thickness of
FGM beam for EhÄ0.1 E0 . The exact solution and that of Galer-
kin method are indistinguishable.

Table 1 The coefficients of the cubic polynomial for E„z…. E0
Ä10 GPa and beam thickness hÄ10 mm.

Eh /E0 a1 a2 a3 a4

10 1 2.9577 20.7889 6.7982
0.1 1 22.1845 1.9844 20.6996
Journal of Applied Mechanics
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that smaller values ofjh represent slender beams or beams s
jected to more uniformly distributed loads, whereas larger val
of jh indicate short stubby beams or beams subjected to con
trated loads. From Figs. 2 and 3 it can be noted that the resul
the Galerkin method agree very well with the exact solution,@1#.
The difference of two solutions is imperceptible. The normaliz
stresses are less than 1 when the loads are applied to the s
face ~Fig. 2, Eh /E0510). On the other hand, the normalize
stresses are much greater than 1 when the loads are applied
harder face~Fig. 3, Eh /E050.1). One can also note the approx
mate location of the neutral axis for the two beams in these
ures.

The transverse shear stresses are plotted in Figs. 4 and 5
approximate solution also agrees well with exact solitions. T
shear stresses attain the maximum value at the neutral axis.
normalized maximum shear stress values are above the con
tional 1.5, when the loads are applied on the harder surface o
beam~Fig. 5!, but fall below 1.5, in some cases when the loa
are applied to the soft side~Fig. 4!.

The present method can be applied to functionally graded st
tures with arbitrary variation of properties and also can be
tended to platelike structures and sandwich construction whe
the core material and/or the face sheets are functionally grad

Fig. 4 Transverse shear stress through the thickness of FGM
beam for EhÄ10 E0 . The exact solution and that of Galerkin
method are indistinguishable.

Fig. 5 Transverse shear stress through the thickness of FGM
beam for EhÄ0.1 E0 . The exact solution and that of Galerkin
method are indistinguishable.
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Fracture of Brittle Microbeams
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The random polycrystalline microstructure of microbeams nec
sitates a reexamination of the crack driving force G stemm
from the Griffith fracture criterion. It is found that, in the case
dead-load conditions, G computed by straightforward averag
of the spatially random elastic modulus E is lower than that o
tained by correct ensemble averaging of the stored elastic ene
This result holds for both Euler-Bernoulli and Timoshenko mod
of micro-beams. However, under fixed-grip conditions G is to
computed by a direct ensemble averaging of E. It turns out t
these two cases provide bounds on G under mixed loading.
thermore, crack stability is shown to involve a stochastic com
tition between potential and surface energies, whose weak
domness leads to a relatively stronger randomness of the crit
crack length. @DOI: 10.1115/1.1651091#

Background
According to Griffith’s theory,@1#, of elastic-brittle solids, the

strain energy release rateG is given by

G5
]W

]A
2

]U

]A
52g (1)

where A is the crack surface area formed,W is the work per-
formed by the applied loads,U is the elastic strain energy, andg
is the energy required to form a unit of new material surface~e.g.,
@2#!. The material parameterg is conventionally taken as constan
but, given the presence of a randomly microheterogeneous m
rial structure, its random field nature is sometimes considered
plicitly ~e.g., @3,4#!. If one recognizes, however, that the rando
material structure also affects the elastic moduli, the computa

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Dec. 1
2002; final revision, Aug. 1, 2003. Associate Editor: M.-J. Pindera.
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of the left-hand side of~1! needs to be reexamined as well. Fu
thermore, randomness of both potential and surface energies
result in a stochastic, rather than deterministic, crack stability
terion. These issues are studied here in the case of crackin
volving a beam-type configuration.

Dead-Load Conditions
This case of constant load implies that the force is nonrand

but the kinematic variable is random. Now, only the second te
in ~1! remains, and, assuming an Euler-Bernoulli beam, the st
energy is

U~a!5E
0

a M2

2IE
dx, (2)

wherea is crack length,M is bending moment,I is beam’s mo-
ment of inertia, andE is elastic modulus. Henceforth, we simp
work with a5A/B, where B is the constant beam~and crack!
width. In view of Clapeyron’s theorem, the strain energy relea
rate may be written as

G5
]U

B]a
. (3)

Now, if the beam’s material is random,E is a random field
parametrized byx, which we can write as a sum of a consta
mean^E& and a zero-mean fluctuationE8(x)

E~v,x!5^E&1E8~v,x! vPV, (4)

whereV is a sample space. TakeE8(x,v) as a wide-sense sta
tionary random field. A random material is thus defined as
ensembleB5$B(v);vPV%5$E(v,x);vPV,xP@0,a#%. Here,
and in the following, we explicitly show the dependence onv,
whenever we wish to indicate the random nature of a given qu
tity prior to ensemble averaging.

On the physical side, the need to consider randomness oE
arises when the representative volume element~RVE! of con-
tinuum mechanics cannot be safely applied to the actual be
Among others, problems of this type are driven by the challen
of micro and nanotechnology; see, e.g.,~@5,6#!. Such a case is
shown in Fig. 1, where a so-calledmicrobeamis so thin that its
lateral dimensionL—i.e., the very one defining its Young’s
modulus—begins to be comparable to the crystal sized. The
‘‘comparable’’ aspect is described by a mesoscaleL/d, and the
RVE is to be replaced by a statistical volume element~SVE!. The
finite-size scaling laws of the SVE—i.e., its approach to the R
with L/d→`—were recently reviewed in@7#.

It follows from ~1! that U is a random integral, such that, fo
each and every realizationvPV, we should consider

6,

Fig. 1 Fracture of a microbeam of thickness L off a substrate.
A statistical volume element „SVE… imposed by the random mi-
croheterogeneous structure characterized by scale d is shown.
04 by ASME Transactions of the ASME

ense or copyright; see http://www.asme.org/terms/Terms_Use.cfm



t

-

l

-

n
ous

y,
g.

-

an-

m.

ctor

or-
t
,

ck
ing
can

Down
U~a,E~v!!5E
0

a M2dx

2IE~v,x!
. (5)

Upon ensemble averaging, this leads to an average energy

^U~a,E!&5K E
0

a M2dx

2I @^E&1E8~v,x!#L . (6)

In the conventional formulation of deterministic fracture m
chanics, random microscale heterogeneitiesE8(x,v) are disre-
garded, and~5! is evaluated by simply replacing the denomina
by ^E&, so that

U~a,^E&!5E
0

a M2dx

2I ^E&
. (7)

Clearly, this amounts to postulating that the response of an id
ized homogeneous material is equal to that of a random one
average. Therefore, we are interested in making a statement a
^U(a,E)& versusU(a,^E&), and about̂ G(E)& versusG(^E&).

First, note that, since the random processE is positive-valued
almost surely~i.e., with probability one!, Jensen’s inequality,@8#,
yields an inequality between harmonic and arithmetic average
the random variableE(v)

1

^E&
<K 1

EL , (8)

whereby thex-dependence is immaterial in view of the assum
wide-sense stationarity of fieldE. With ~6! and ~7!, this implies
that

U~a,^E&!5E
0

a M2dx

2I ^E&
<E

0

a M2

2I K 1

EL dx

5K E
0

a M2dx

2IE~v,x!L 5^U~a,E!&, (9)

since the conditions required by Fubini’s theorem,@8# are met.
Now, if we define the strain energy release rateG(a,^E&) in a

hypothetical material specified bŷE&, and the strain energy re
lease ratê G(a,E)& properly ensemble averaged in the rando
material$E(v,x);vPV,xP@0,a#%

G~a,^E&!5
]U~a,^E&!

B]a
^G~a,E!&5

]^U~a,E!&
B]a

, (10)

and note that the side condition is the same in both cases

U~a,^E&!ua5050 ^U~a,E!&ua5050, (11)

we obtain
G~a,^E&!<^G~a,E!&. (12)

This provides a formula for the ensemble averageG under dead-
load conditions using deterministic fracture mechanics for Eu
Bernoulli beams made of random materials.

Another derivation of this is obtained by first introducing
complementary energy through an application of arandom Leg-
endre transformation, @9#,

U* ~a,E~v!!5M•u2U~a,E~v!! vPV, (13)

whereu is the angle of twist conjugate toM, such that

U* ~a,E~v!!5E
0

a IE~v!

2
u2dx. (14)

It then follows from~8! that

U* ~a,^E~v!&!5E
0

a I ^E~v!&
2

u2dx>E
0

a I ^E21~v!&21

2
u2dx

5U* ~a,^E21~v!&21!, (15)

which, with the side condition
Journal of Applied Mechanics
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U* ~a,^E&!ua5050 U* ~a,^E21&21!ua5050, (16)

and the definitions

G* ~a,^E&!5
]U~a,^E&!

B]a
G* ~a,^E21&21!5

]U~a,^E21&21

B]a
,

(17)

yields
G* ~a,^E&!>G* ~a,^E21&21!. (18)

SinceG(a,^E&)5G* (a,^E&) in a linear elastic material, we ob
tain ~12!.

Inequality ~12! shows thatG computed under the assumptio
that the random material is directly replaced by a homogene
material (E(x,v)5^E&), is lower thanG computed withE taken
explicitly as a spatially varying material property. Clearl
^G(a,E)& is the correct quantity to be used under dead loadin

Remark 1. With the beam thicknessL increasing, the mesos
cale L/d grows, so thatE8→0. Thus,^E21&21→^E&, and ~12!
turns into an equality, whereby the deterministic fracture mech
ics is recovered.

Remark 2. These results carry over to a Timoshenko bea
In that case, strain energy is defined by

U~a!5E
0

a M2

2IE
dx1E

0

a V2

2Am
dx, (19)

whereV is shear force,A is beam’s moment of inertia, andm is
shear modulus. The random material is now defined as a ve
random fieldB5$C(v,x);vPV,xP@0,a#%, where the stiffness
C5@E,m#. With the strain energy release rate defined by~3!, we
now derive

G~a,^E&,^m&!<^G~a,E,m!&5G* ~a,^E21&21,^m21&21!.
(20)

The equality in ~20! follows from the random Legendre
transformation.

Fixed-Grip Conditions
In this case the displacement is constant~i.e., nonrandom!, and

the load is random. Now, only the first term in~1! remains so that

G52
]Ue~a!

B]a
. (21)

Suppose now that there is loading by a forceP at the tip, so that
we have

G52
u

2B

]P

]a
. (22)

Take now a cantilever beam problem implyingP53uEI/a3.
Then, we find

^G&52
u

2B K ]P

]a L 52
u

2B

]^P&
]a

5
9u2I ^E&

2Ba4
. (23)

Since the load—be it a force and/or a moment—is always prop
tional to E, this indicates thatG can be computed by a direc
ensemble averaging ofE under fixed-grip loading, and, indeed
the same conclusion carries over to Timoshenko beams.

Mixed-Loading Conditions
In general, both load and displacement vary during cra

growth, and there is no explicit relation between the crack driv
force and the change in elastic strain energy. However, we
bound G under mixed loading (Gmixed) by G under dead load
(GP) andG under fixed grip (Gu), providing we note the follow-
ing facts:
MAY 2004, Vol. 71 Õ 425
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~i! Observe that GP5^G(a,E)&, while Gu5G(a,^E&).
Clearly, in view of~18!, the ensemble averages satisfy

Gu<GP . (24)

~ii ! Any (dP,du) change in theP, u-plane, corresponding to
Gmixed due to an extension of the crack byda, may be split into
two parts: (0,du) and (dP,0). The first part, involving an exten
sion of the crack by (da)1 , is computed asGP5^G(a
1(da)1 ,E)&. The second part, involving an extension of t
crack by (da)2 , is computed asGu5G(a1(da)2 ,^E&).

~iii ! Observe that

Gmixed~a1da!5Gu~a1~da!2!1GP~a1~da!1!<GP~a1da!
(25)

becauseGu(a1(da)2)<GP(a1(da)2) by ~24!, while

Gmixed~a1da!5Gu~a1~da!1!1GP~a1~da!2!>Gu~a1da!
(26)

becauseGP(a1(da)1)>Gu(a1(da)1) again by~24!.
It follows that Gmixed due toda5(da)11(da)2 is bounded by

theG’s computed under dead-load and fixed-grip conditions, fr
above and below, respectively:

Gu<Gmixed<GP . (27)

Note that, interestingly, in mechanics of random media,
energy-type inequalites are usually ordered in an inverse fash
kinematic ~resp. force! conditions provide upper~resp. lower!
bounds.

Moving on to the case of Timoshenko beam loaded at the
we have four particular possibilities:

~i! P andM fixed: GP2M ,
~ii ! P andu fixed: GP2u ,
~iii ! u andM fixed: Gu2M ,
~iv! u andu fixed: Gu2u ,
wherein GP2u and Gu2M are G’s under mixed conditions.

Now, in place of~24! we have

Gu2u<GP2u<GP2M Gu2u<Gu2M<GP2M . (28)

Stochastic Crack Stability
Recalling the fracture criterion~1!, we observe that cracking

along thex axis is governed by an interplay of two random fiel
~parametrized byx!: the elastic propertyE and the surface energ
densityg. In view of the scaling arguments concerning the SV
versus the RVE in the paragraph following Eq.~4!, the first one is
a function of the beam thicknessL, but the second one is no
Thus, for statistically stationary and ergodic materials, the r
domness ofE decreases to zero as the mesoscaleL/d→`, but the
randomness ofg remains constant. To sum up, cracking of micr
beams is more sensitive to the material randomness of el
moduli than cracking of, say, large plates.

Crack stability in any particular micro-beam~vPV!, in a gen-
eral loading situation, is governed by the condition of the sa
form as that in deterministic fracture mechanics,@2#,

]2~P~v!1G~v!!

]a2 H ,0: unstable equilibrium

50: neutral equilibrium

.0: stable equilibrium.

(29)

Here both, the total potential energyP~v! and the surface energ
G~v! are random. Now, under dead-load conditions, the corre
averaged̂P& ~shown by a solid line! is bounded from above by
the deterministicP estimated by a straightforward averaging ofE

P~^1/E&!5^P&<P~^E&!. (30)

The above follows again from~8!. Typically, the energyP goes
like 2a3. Thus, in Fig. 2, we use a wedge of two parabolas
indicate scatter associated with the mean

P~^1/E&!5^P&. (31)
426 Õ Vol. 71, MAY 2004
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Next, if we take, in analogy to~4!, the surface energy density a
a random field made up of a constant mean^g& and a zero-mean
fluctuationg8(x)

g~v,x!5^g&1g8~v,x! vPV, (32)

then the surface energyG(v)52a@^g&1g8(v)#. Thus, using two
straight lines, we indicate scatter about^G&52a^g&. Conse-
quently, the scatter about the mean ofP~v!1G~v! is larger than
that of P~v! or G~v! alone, and at the maximum of their sum w
have a stochastic competition between both contributions. E
dently, according to~29!, the critical crack lengthac becomes a
random variable—i.e.,ac(E(v))—and we show its range by a
dashed region in Fig. 2. In view of~30!, there is an inequality
between the averageac properly calculated fromP(^1/E&)

]2@P~^1/E&!1^G&#

]a2
50⇒ac~^1/E&!5^ac~E!& (33)

and the deterministicac simplistically calculated fromP(^E&) is

]2@P~^E&!1^G&#

]a2
50⇒ac~^E&!. (34)

The said inequality is

ac~^1/E&!<ac~^E&!. (35)

Note that the equalityac(^1/E&)5^ac(E)& in ~33! follows from
~31!. Finally, Fig. 2 shows that small random fluctuations inE and
g ~i.e., scatter about the maximum ofP(^1/E&)1^G&) lead to
relatively much stronger~!! fluctuations inac .
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Fig. 2 Potential energy P„Š1ÕE‹… „thick line … and its scatter
shown by a parabolic wedge „thin lines …, summed with the sur-
face energy ŠG‹Ä2aŠg‹ „thick line … and its scatter shown by a
straight wedge „thin lines …, results in P„Š1ÕE‹…¿ŠG‹ „thick line …

and having scatter shown by a wider parabolic wedge „thin
lines …. Dashed region indicates the range of a critical crack
length ac„E„v……, a random variable.
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Elastic-Plastic Stress Distribution in a
Plastically Anisotropic Rotating
Disk
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The plane state of stress in an elastic-plastic rotating anisotro
annular disk is studied. To incorporate the effect of anisotropy
the plastic flow, Hill’s quadratic orthotropic yield criterion and it
associated flow rule are adopted. A semi-analytical solution
obtained. The solution is illustrated by numerical calculatio
showing various aspects of the influence of plastic anisotropy
the stress distribution in the rotating disk.
@DOI: 10.1115/1.1751183#

1 Introduction
The dependence of stress distribution on the angular velocit

rotating disks is of significant importance due to a large numbe
applications. The majority of the work in this area is based on
assumption that the material is isotropic and obeys Tresca y
criterion with its associated flow rule~see@1# and a review in this
paper!. A comparison of the solutions for elastic-plastic rotati
solid and annular disks based on Tresca and Mises yield cri
was given in@2#. In particular, the difference in stress distributio
calculated with those two criteria was discussed. The effec
yield criteria on the stress distribution and limit angular veloc
of a rotating disk with variable thickness was also investigated
@3#. In @4,5#, the influence of temperature fields on the develo
ment of plastic zones in nonrotating thin disks was demonstra
In particular, it appeared that the rise in temperature at which
entire plate became plastic was very small for various plate

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Janu
3, 2003, final revision, October 17, 2003. Associate Editor: M.-J. Pindera.
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ometries. Summarizing the results obtained in@2–5# one may ex-
pect that deviations from isotropic material response can hav
significant effect on the development of plastic zones in thin
tating disks. Elastic solutions for solid and annular rotating ani
tropic disks were found in@6,7#. Plastic solutions for such disk
are not available, to the best of our knowledge. Among the vari
theories of anisotropic plasticity, the one based on Hill’s yie
criterion and its associated flow rule,@8#, is simplest and most
popular. This yield criterion is adopted in the present paper.
axisymmetric problem is formulated assuming that the princi
axes of anisotropy coincide with the radial and circumferen
directions in plane of a thin disk rotating about its axis. The ed
of the disk are stress free, and stresses are continuous acros
elastic-plastic boundary. A semi-analytical solution is found un
plane stress conditions.

2 Solution
Consider a circular disk of outer radiusb and inner radiusa

rotating with an angular velocityv about its axis. The thickness o
the disk is assumed to be small such that the plane state of s
can be adopted. In a cylindrical coordinate systemruz with its
z-axis coinciding with the axis of rotation, there are only tw
nonzero components of the stress tensor,s r andsu . The elastic
properties of the material are assumed to be isotropic, and
elastic portion of the strain tensor obeys Hooke’s law. In the
lindrical coordinates chosen, Hill’s yield criterion has the form

~G1H !s r
222Hs rsu1~H1F !su

251 (1)

whereG, H, F are constants which characterize the current s
of material anisotropy. It is convenient to rewrite~1! as

s r
21pu

22hs rpu5s0
2 (2)

where
h52H/A~G1H !~H1F !, h15AG1H/AH1F,

s051/~G1H !, pu5su /h1 . (3)

The only nontrivial equation of motion is

]s r

]r
1

s r2su

r
52rv2r , (4)

wherer the density of the material. The boundary conditions a

s r50 at r 5a and r 5b. (5)

At small v the entire disk is elastic. Since the elastic propert
are assumed to be isotropic, the general solution for stress
well known ~see, for example,@9#!. Using ~5! the distribution of
stresses can be found in the following form:

s r5
31n

8
rv2S a21b22

a2b2

r 2
2r 2D ,

(6)

su5
31n

8
rv2S a21b21

a2b2

r 2
2

113n

31n
r 2D

where n is Poisson’s ratio. Assume that yielding begins at t
inner radius of the disk~it will be verified a posteriori!. Then,
using~3! and taking into account thatsu.0, the angular velocity
at the initial yielding,ve , is obtained by substitution of~6! into
~2!

rve
2b2

s0
5

4h1

~31n!1~12n!~a2/b2!
. (7)

If v is higher thanve , a plastic zone appears in the disk. Th
angular velocity at which the entire disk becomes plastic will
denoted byvp . In the rangeve,v,vp the disk consists of an
inner plastic zone surrounded by an outer elastic zone. To find
distribution of stresses in the plastic zone, it is convenient to
troduce the following nondimensional quantities:

ry
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V5rv2b2/s0 , q5a/b, b5r /b, g5c/b (8)

wherec is the radius of the elastic-plastic boundary. Equation~2!
is satisfied automatically by the substitution

s r /s052 cosw/A42h2, pu /s05h cosw/A42h21sinw
(9)

wherew is a function ofb. Substituting~9! into ~4!, with the use
of ~3!, leads to the following ordinary differential equation forw:

2 sinw

A42h2

dw

db
2S 2F cosw

~H1F !A42h2
2h1 sinw D 1

b
2Vb50.

(10)

The boundary condition to this equation follows from~5! at r
5a and ~9! in the form

w5p/2 (11)

at b5q. The solution to~10! satisfying the boundary condition
~11! can be obtained numerically and givesw as a function ofb.
This function is not monotonic,w attains its maximum at som
value ofb and, then, decreases. If the entire disk is plastic, t
w5p/2 at b51, as follows from~5! at r 5b and ~9!. For a given
value of q, it is clear from ~10! that w depends onb and V,
w5w~b,V!. Therefore, the solution to the equationw(1,Vp)
5p/2, if it exists, gives the value ofVp corresponding tovp .
The variation of the nondimensional quantity (vp2ve)/ve with q
is shown in Fig. 1.

Once the solution to~10! has been found, the distribution o
stresses in the plastic zoneq<b<g is given by~9! with the use
of ~3!. The general stress solution given in@9# is valid in the
elastic regiong<b<1. Using the boundary condition~5! at r
5b and notation~8! it may be rewritten as

s r

s0
5

B

s0
S 1

b2
21D 1

31n

8
V~12b2!,

(12)

su

s0
52

B

s0
S 1

b2
11D 1

113n

8
VS 31n

113n
2b2D

whereB is an arbitrary constant. For a given angular velocity
the rangeve,v,vp the magnitudes ofg and B can be deter-
mined from the condition of continuity of the stresses across
elastic-plastic boundary. Atb5g, it follows from ~3!, ~9!, and
~12!,

B

s0
5

1

~1/g221!
F 2

A42h2
coswg2

31n

8
V~12g2!G (13)

Fig. 1 Variation of the nondimensional quantity „vpÀve…Õve
with q
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coswg

A42h2 S hh112
11g2

12g2D 1h1 sinwg

(14)

wherewg is the value ofw at b5g and is a function ofg since the
solution to~10! givesw as a function ofb. Equation~14! should
be solved numerically to obtaing as a function ofV. Then,B can
be found as a function ofV with the use of~13!.

3 Numerical Results and Discussion
To illustrate the effect of plastic anisotropy on the developm

of the plastic zone some numerical results are presented in
section. In all cases,n51/3. The solution for the isotropic materia
is obtained as a particular case of the general solution foun
F5G5H. In Figs. 1–4, the corresponding calculations are illu
trated by dashed lines. Four sets of anisotropic coefficients
considered~@10,11#!:

F/~G1H !50.243, H/~G1H !50.703 for steel DC06;

F/~G1H !50.587,

H/~G1H !50.410 for aluminum alloy AA6016;

F/~G1H !50.498,

H/~G1H !50.419 for aluminum alloy AA5182;

F/~G1H !50.239,

H/~G1H !50.301 for aluminum alloy AA3104.
Note that the coefficients were measured for rolled sheets w
straight principal axes of anisotropy. It is clear that the disk un
consideration cannot be made of such sheets. However, for i

Fig. 2 Variation of the nondimensional radius of elastic-plastic
boundary, g, with V at qÄ0.4

Fig. 3 Radial stress distribution at VÄ1.85 and qÄ0.4
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trative purposes it is possible to use the aforementioned co
cients for characterizing the level of anisotropy at each po
Figure 2 shows the variation of the radius of elastic-plastic bou
ary, g, with V at q50.4. Figures 3 and 4 illustrate typical radi
and circumferential stress distributions atV51.85 andq50.4,
respectively.

There are two main conclusions to be made. First, the qua
tive behavior of all curves is the same for anisotropic and iso
pic materials: the increase in the angular velocity fromve to vp is
relatively small~Fig. 1!, and it tends to be smaller for the alum
num alloys of lower series. This is also illustrated in Fig. 2. S
ond, the anisotropic plastic properties have a significant effec
the size of the plastic zone and the stress distributions~Figs. 3 and
4!. It is expected that this effect may have an influence on resid
stress distributions, fatigue crack growth and other properties
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Nomenclature

a, b 5 inner and outer radii of the disk, respectively
c 5 elastic-plastic boundary

p0 5 modified tangential stress
q 5 ratio of the inner to outer radius of the disk

ruz 5 cylindrical coordinate system
b 5 nondimensional polar radius
g 5 nondimensional radius of the elastic-plastic bound

h, h1 5 plastic anisotropic parameters
n 5 Poisson’s ratio
r 5 density of the material

s r , su 5 components of the stress tensor in the cylindrical
coordinate system

w 5 function of r
wg 5 value ofw at b5g
V 5 nondimensional parameter
v 5 angular velocity

ve 5 angular velocity at the initial yielding
vp 5 angular velocity at which the entire disk becomes

plastic
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Saint-Venant Decay Rates for the
Rectangular Cross Section Rod

N. G. Stephen
School of Engineering Sciences, Mechanical Engineerin
The University of Southampton, Highfield,
Southampton SO17 1BJ, UK

P. J. Wang
School of Mechanical, Materials, Manufacturing
Engineering and Management, The University of
Nottingham, University Park, Nottingham NG7 2RD, UK

A finite element-transfer matrix procedure developed for deter
nation of Saint-Venant decay rates of self-equilibrated loading
one end of a semi-infinite prismatic elastic rod of general cro
section, which are the eigenvalues of a single repeating cell tra
fer matrix, is applied to the case of a rectangular cross secti
First, a characteristic length of the rod is modelled within a fini
element code; a superelement stiffness matrix relating force
displacement components at the master nodes at the ends o
length is then constructed, and its manipulation provides
transfer matrix, from which the eigenvalues and eigenvectors
determined. Over the range from plane stress to plane str
which are the extremes of aspect ratio, there are always eig
modes which decay slower than the generalized Papkovitch-F
modes, the latter being largely insensitive to aspect ratio. F
compact cross sections, close to square, the slowest decay is
mode having a distribution of axial displacement reminiscent
that associated with warping during torsion; for less compa
cross sections, slowest decay is for a mode characterized by c
sectional bending, caused by self-equilibrated twisting mom
@DOI: 10.1115/1.1687794#

1 Introduction
For a one-dimensional, beam-like structure, Saint-Vena

principle~SVP! allows one to replace a known load system on o
end by a statically equivalent load distributed in a particular w
demanded by the elastostatic solution, known as the relaxed

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
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condition. Statically equivalent implies that the resultant force a
moment are unchanged; the difference between the two load
tributions is termed self-equilibrating and since it has no resul
force or couple that requires reaction at some other locations
the structure, there is no reason why the associated stress
strain field should penetrate any great distance into the struc
That is the self-equilibrating load should produce only a lo
effect, which decays as one moves away from the beam end
the other hand, more often than not, the exact distribution is
known, only the magnitude of the end load; either way, SVP
rarely invoked consciously, yet it underpins the day-to-day ap
cation of the discipline of strength of materials.

Exact elasticity solutions for these end effects are availa
when the rod has a mathematically amenable boundary, suc
the solid and hollow circular cross section,@1,2#; however, for the
important case of a rod of rectangular cross section, the w
known Papkovitch-Fadle~P-F! modes~see, for example,@3#!, ap-
ply only to the extremes of aspect ratio which are plane strain
plane stress, and are subject to their inherent stress and disp
ment assumptions, while an antiplane solution,@4#, assumes infi-
nite width.

Toupin @5# provided the first proof of SVP in 1965, and the
has been extensive research since that time, with reviews ha
been provided by Horgan and Knowles,@6–8#. Toupin argued that
attempts to calculate decay rates are not ‘‘consistent with the spirit
of the principle, and the way it is used. After all, if one ca
construct, or is willing to construct solutions, there is no need
the principle.’’ A counter view is that a knowledge of the mini
mum decay rate for a particular structure defines the extent o
region where a calculated stress may be in error. In a recent p
@9#, the present authors described a numerical procedure w
allowed the determination of the Saint-Venant decay rates fo
semi-infinite elastic rod of arbitrary cross section subjected
self-equilibrated loading at one end. This procedure is, in turn
development of a transfer matrix method,@10#, in which the decay
rates and equivalent continuum beam properties of a repet
pin-jointed framework, consisting of a series of identical cells, c
be calculated. Nodal displacements and forces on either sid
the generic cell form state vectors which are related by mean
a transfer matrix, the latter being determined from a knowledg
the cell stiffness matrix; on account of translational symme
consecutive state vectors are related by a constant multiplel, the
decay factor, which leads directly to a standard eigenvalue p
lem. For the continuum elastic beam of arbitrary cross section,
beam is first regarded as a series of identical cells of a chara
istic length, related to some cross-sectional dimension; the s
ness matrix of one such cell is constructed using a finite elem
code, such as ANSYS. Since displacement and force compon
are required only for master nodes at the ends of the cell,
others are treated as slave nodes. This condensation creates
perelement stiffness matrix, which is imported into a MATLA
430 Õ Vol. 71, MAY 2004
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environment where the manipulations to form the transfer ma
and determination of the eigenvalues are readily accomplish
Accuracy of the method was established in@9# by comparison
with the decay rate predictions from a selection of the stock
exact elasticity solutions, and found to be excellent. The the
behind the method was described fully in@9#, and is not repeated
here.

2 Finite Element Modelling of the Cell
Figure 1 shows a typical repeating cell of the rod having wid

2a, depth 2b and lengthl c . For numerical purposes we takeb
and l c as equal to unity, when the calculated decay rates, over
range of aspect ratiosa/b51/20→40, are a multiple of the rod
semi-depthb. The modelling data are given in Table 1; in all cas
20-node isoperimetric elements were used and Poisson’s ratio
taken to be 0.25. The large dimension of the transfer matrix,
example 5763576 in the case of the square cross section, in t
leads to a large number of possible decay modes; 12 of the ei
values are equal to unity and these pertain to the six rigid b
displacements, and the six transmission modes of tension, tor
and shear and bending in two planes. The remaining eigenva
occur as reciprocal pairs~the transfer matrix being symplectic!
according to whether decay is from left to right, or vice vers
which leads to the prediction of 282 distinct left to right dec
modes. Of these, the most important~and the most accurate! are
those which provide the slowest~spatially! rates of decay; thus for
the square cross section, only the first ten decay rates are
sented, allowing some classification into families of decay mod

Fig. 1 Semi-infinite elastic rod of rectangular cross section
subject to self-equilibrated load on the end zÄ0, and repeating
cell of length l c
Table 1 Finite element modeling data of rectangular crosssection of characteristic length, l c

Aspect ratio
a/b

Division of
2a32b

Division of
length,I c

Number of
elements

Nodes in
cross-section

Size of transer
matrix

1/20 438 10 320 121 7263726
1/10 438 10 320 121 7263726
1/4 338 5 120 95 5703570
1/2 338 5 120 95 5703570
2/3 436 5 120 93 5583558
4/5 436 5 120 93 5583558
1 535 5 125 96 5763576
5/4 634 5 120 93 5583558
3/2 634 5 120 93 5583558
2 833 5 120 95 5703570
4 833 5 120 95 5703570
10 834 5 160 121 7263726
20 834 5 160 121 7263726
40 834 5 160 121 7263726
Transactions of the ASME
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3 Results and Discussion
The slowest decay rate predictions are shown in Table 2

ascending magnitude of the real part which governs the rat
decay; thus the first row pertains to self-equilibrated loading t
will penetrate the greatest distance into the structure. Exact d
rates are available only at the extremes of aspect ratio, for ge
alized plane stress (a/b→0) and plane strain (a/b→`) when
stress decays exponentially from one end as exp(2kz), wherek
are the roots of the well-known Papkovitch-Fadle~P-F!
eigenequation~see@3#, article 26!

sin 2kb62kb50; (1)

the two smallest roots arekb52.106261.1254i , kb55.3563
61.5516i for the positive sign in Eq.~1!, which is the symmetric
case, andkb53.748861.3843i , kb56.950061.6761i for the
negative sign, the asymmetric case. In the case of antiplane s
@4#, decay from the loaded edge is as exp(2npz/2b), wheren is
an integer, implying a slowest decay given by the rootkb5p/2;
these exact decay rates are shown in the first column The sh
entries in Table 2 are those that, by virtue of similarity of t
displacement field, are closest to these known exact solutions
are here regarded as generalized P-F or generalized shear m

First, it is noted that the decay rates of the generalized
modes appear largely insensitive to aspect ratio; thus for the c
a/b<2/3, the real part of the slowest generalized symmetric
mode exceeds that of the exact plane stress value~2.1062! by less
than 0.1%, and fora/b54/5 it is less than the plane stress val
by 0.5%. The maximum deviation occurs for the square cr
section,a/b51, at less than17%. For the slowest asymmetri
generalized P-F mode, the real part exceeds the plane stress
~3.7488! by less than 3% fora/b<1.

For all aspect ratios considered, there is at least one mode
decays slower than the generalized P-F modes. Fora/b<1, the
mode associated with the real root is characterized by a ben
of the cross section due to self-equilibrated twisting momen
the xy-plane, as depicted in Fig. 2. The mode associated with
complex root is characterized by an axial warping displacem
field reminiscent of Saint-Venant torsion, and hence a stress
associated with the restraint of torsional warping~here referred to
as the bi-moment mode!.

For the casesa/b.5/4, Table 2, there are an increasing numb
of modes which decay slower than the slowest P-F modes; a
the smallest of these modes is characterized by cross-sect
bending, but in fact they are physically the same modes of de

Fig. 2 Self-equilibrated twisting moment on the end zÄ0;
aspect ratio aÕbË1
432 Õ Vol. 71, MAY 2004
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as those which provide the smallest decay rates fora/b,4/5; thus
consider the dual relationship between the decay rates for the
casesa/b52/3 anda/b53/2; physically the bars are identica
the difference being an interchange of the coordinate axes and
implication, the dimensionsa and b. The slowest decay rate fo
a/b52/3 is kb52.0420, when stress decays
exp(22.0420z/b)5exp(21.3613z/a), which is the smallest de-
cay rate fora/b53/2, albeit witha andb reversed; generalization
of this result is straightforward for other aspect ratios. For a
particular aspect ratioa/b,1, a dual decay rate may be found b
simply multiplying by the aspect ratio: thus an entry fora/b54
can be found from the decay rate fora/b51/4, and multiplying by
1/4; for example, 1.499631/450.3749. Indeed, in Table 2, with
the exception of those entries below the symbol↓, which denotes
that some decay rates have not been entered, every decay
for a/b,1 has a dual fora/b.1 on the same row.

Compared to the general rectangle, which is symmetric ab
the coordinate axes, the square cross section is, in addition, s
metric about the two diagonals; in turn the decay rates can o
as single eigenvalues, or as pairs, according to the~a!symmetry of
the displacement field. For the slowest bi-moment mode (kb
51.663960.5717i ) both the axial displacement,w, and the cross-
sectional displacements,u and v, are symmetric with respect to
the diagonals, and asymmetric with respect to thex andy-axes; in
consequence a single root, and a single eigenvector~decay mode!,
suffices. On the other hand, repeated decay rates occur for
metric cross-sectional bending (2.547460.9238i ) and the asym-
metric P-F mode (3.797061.3876i ), but not for the asymmetric
cross-sectional bending, or symmetric P-F modes. The sin
roots ata/b51 show~a!symmetries, as follows:

(1.663960.5717i ) u, v andw are symmetric about both
diagonals, asymmetric about both
coordinate axes

(3.880461.3623i ) u, v andw are asymmetric about both
diagonals and coordinate axes

4.0408 u, v andw are asymmetric about both
diagonals and coordinate axes

(2.239161.1072i ) u, v andw are symmetric about both
diagonals and coordinate axes

(1.991761.1546i ) u, v andw are symmetric about
both coordinate axes, asymmetric
about the diagonals

In each case, there are~a!symmetries for each of the three
displacement components.

In contrast the modes pertaining to the double roots show a
developed pattern of~a!symmetry; for example,

(2.547460.9238i ) one mode hasu andv symmetric about
the y-axis, asymmetric about
the x-axis, no~a!symmetries about diagona
w no ~a!symmetries; the
other mode hasw symmetric about the
x-axis, asymmetric about they-
axis, no~a!symmetries about diagonals;
u andv show no
~a!symmetries

3.797061.3876i one mode hasw symmetric about
one diagonal, asymmetric about the
other;u andv show no~a!symmetries;
the other mode hasu andv
asymmetric about thex-axis, symmetric
about they-axis; w shows no
~a!symmetries.

Now there is planar~a!symmetry in respect ofu andv, or ~a!sym-
metries for the axial displacementw, but not both. Thus it appear
that the occurrence, or otherwise, of a double decay mode dep
on the degree of~a!symmetry in the displacement field.
Transactions of the ASME
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On Source-Limited Dislocations in
Nanoindentation

M. X. Shi
Department of Theoretical and Applied Mechanics,
University of Illinois at Urbana-Champaign,
Urbana, IL 61801

Y. Huang1

Department of Mechanical and Industrial Engineering,
University of Illinois at Urbana-Champaign,
Urbana, IL 61801
e-mail: huang9@uiuc.edu

M. Li
Alcoa Technical Center, Alcoa Center, PA 15069

K. C. Hwang
Department of Engineering Mechanics,
Tsinghua University, Beijing 100084, P.R. China

The discrete dislocation model is used in this note to investigate
the source-limited dislocation generation and glide in nanoinden-
tation. It is shown that once there are enough sources for dislo-
cation generation, the material behavior becomes independent of
the dislocation source distribution.@DOI: 10.1115/1.1751185#

1 Introduction
Nanoindentation has become a major experimental technique to

probe the mechanical properties of materials at the nanoscale,
@1,2#. Dislocation glide underneath the nanoindenter is identified
as the key mechanism of plastic deformation in nanoindentation,
@3,4#. Dislocation loops are observed near the edge of the nanoin-
denter,@4#. The quasi-continuum analysis,@5#, shows that disloca-
tions are indeed generated right underneath the corner of the rect-
angular indenter and then moved into the bulk material. In this
note we present a discrete dislocation analysis to investigate the
effect of dislocation source distribution in nanoindentation, par-
ticularly the source-limited dislocation generation and glide~i.e.,
very few sources for dislocation generation!. Following Shi et al.
@6#, we modify the two-dimensional discrete dislocation model of
van der Giessen, Needleman and co-workers,@7,8#, for the equi-
librium dislocation analysis by requiring that the glide component
of the Peach-Koehler force on each dislocation vanishes at each
time step.

2 Equilibrium Analysis of Discrete Dislocations
We study a region of 4mm32 mm subject to pressure on the

top surface over a zone of 0.8mm. The Young’s modulus is 70
GPa, and Poisson’s ratio is 0.33. Figure 1 shows the symmetric,
right-half region~2 mm32 mm!. The symmetry or traction-free
conditions give that the shear stress tractions vanish on all bound-
aries. In addition, the left boundary is subject to the symmetry
condition ux50. The right surface is traction free, so is the top
surface except over the loading region where the pressure is ap-

2,

Down
Finally, we note in Table 2 a decay rate which approaches t
slowest antiplane strain shear decay rate ofkb5p/2, with an error
of less than 0.6% whena/b>10.

4 Concluding Remarks
For the rectangular cross section, there are always eigenm

that decay slower than the Papkovitch-Fadle~P-F! modes; typi-
cally these are modes characterized by a bending of the c
section, which would be precluded by plane stress/plane st
assumptions. The exception is for a compact cross section, th
close to being square, when slowest decay is for a mode as
ated with a bi-moment. However, the P-F modes remain impor
as a means of classification of the various decay modes.

In discussing the decay rates, attention has focused on the s
est, as it is these which validate Saint-Venant’s principle; for
square cross section, the slowest Saint-Venant decay is
exp(21.6639z/b)5exp(24.7062z/d) whered52A2b is the sec-
tion diagonal, which is the greatest linear dimension of the cro
section; this implies that stress level reduces to less than 1%
free end value at distancez5d from the free end, indicating tha
SVP is clearly applicable. On the other hand, at first sight a v
small decay rate, such askb50.0648 for aspect ratioa/b520,
Table 2, might suggest that SVP is inapplicable; indeed the st
level only reduces to 87.8% of its free end value at distancz
52b ~that is, distance 13plate thickness! from the free end. How-
ever, if the decay characteristic is expressed in terms of multi
of the diagonald52A401b, decay is as exp(22.5952z/d). This
implies stress reduction to less than 7.5% at distancez5d from
the free end, and to less than 0.6% at twice that distance; thus
is still clearly applicable so long as the decay characteristic a
more importantly, the sense in which SVP is understood, is
terms of multiples of the cross section greatest linear dimen
which is dominated by plate width 2a for this aspect ratio.

Nomenclature

a, b 5 semi-width and semi-depth of rectangular cross
section

d 5 greatest linear dimension of cross section
(d52Aa21b2)

i 5 (21)1/2

k 5 decay rate (k5 ln l)
l c 5 characteristic length

u, v, w 5 displacement components in thex, y, and
z-directions

x, y, z 5 Cartesian coordinates
l 5 decay factor, eigenvalue of transfer matrix
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pressure in the finite loading region~0.4 mm! to represent the
indentation. The bottom surface is also subject to boundary c
dition uy50.

The right-half region in Fig. 1 contains 18 slip planes with t
slip plane spacing 112.5 nm. We have chosen the slip planes
allel to the direction of pressure~on the top surface! since these
slip planes allow dislocations to move downward, which is co
sistent with that observed by Tadmor et al.@5#. Initially, the solid
is assumed to be free of mobile dislocations, but to contai
random distribution of dislocation sources and point obstac
The sources mimic Frank-Read sources and generate a disloc
dipole when the Peach-Koehler force exceeds a critical va
@6–8#. The obstacles, which could be small precipitates or for
of dislocations, pin dislocations and will release them once
Peach-Koehler force attains the obstacle strength,@6–8#.

There are three sources for dislocation generation~marked by
open circles! randomly distributed on each slip plane, and th
strength follows a normal distribution with the mean streng
t̄NUC550 MPa and standard deviation 0.2t̄NUC510 MPa. Once
the glide component of the Peach-Koehler force exceedstNUCb
over timetNUC50.01ms, a dislocation dipole is generated,@6–8#.
Hereb50.25 nm is the length of the Burgers vector, and the gl
component of the Peach-Koehler force on theKth dislocation is
given by

f K5nK
•s•bK, (1)

wherenK is the slip plane normal,bK is the Burgers vector of the
Kth dislocation ands is the stress field excluding the contributio
from theKth dislocation itself.

There are ten obstacles~marked by solid circles! randomly dis-
tributed on each slip plane, with the obstacle strengthtOBS
5150 MPa. When a dislocation meets an obstacle, it is pinne
this obstacle until the glide component of the Peach-Koehler fo
given in ~1! exceedstOBSb. On each slip plane there is an add
tional obstacle very close to the bottom surface with very la
obstacle strength in order to prevent dislocations from exiting
bottom surface. This represents~or mimics! the effect of a hard
substrate that blocks dislocations at the film/substrate interf

Fig. 1 Random distribution of dislocation sources „open
circles … and obstacles „solid circles … on slip planes „dashed
lines …. There are 18 slip planes in the 2 mmÃ2 mm region, with
3 dislocation sources and 11 obstacles on each slip plane. The
pressure is applied over a region of 0.4 mm on the top surface.
434 Õ Vol. 71, MAY 2004
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Dislocation annihilation is also accounted for. Two dislocatio
with opposite Burgers vectors on the same slip plane annihi
when their spacing is less than 6b.

The same approach of van der Giessen, Needleman, and
workers,@7,8#, is used to decompose the problem into~1! an ana-
lytic solution for dislocations in an infinite solid, and~2! a finite
element solution for a dislocation-free solid with finite boun
aries. The finite element method can handle the second prob
very effectively since it does not involve any singularities,@7,8#.
However, Our analysis is different in that all dislocations rea
equilibrium within each time increment, though they may exit t
solid ~from the top surface!, or be pinned at obstacles. The disl
cation positions are solved iteratively within each time increm
until the glide component of the Peach-Koehler force vanishes
every dislocation,@6#.

3 Results
Figure 1 also shows the dislocation distribution on all 18 s

planes in the solid at the pressure 0.012E, whereE is the Young’s
modulus. The distance between the end of loading region and
nearest slip plane is 6.25 nm. It is clearly observed that m
dislocations are generated on the slip plane closest to the en
loading region. This is due to the high stress concentration at
end of loading region,@9#. In fact, the normal stress in the direc
tion perpendicular to the applied pressure is even singular at
end of loading region,@9#. The pattern of dislocation distribution
shown in Fig. 1 is similar to the patterns observed in the qua
continuum analysis,@5#, and experiments,@3,4#.

In order to examine the effect of dislocation source distribut
in nanoindentation, we have also studied the same region~2
mm32 mm! with 6, 53, and 160 slip planes. The slip plane spa
ings are 337.5 nm, 37.5 nm, and 12.5 nm, respectively. The siz
loading region remains the same~0.4 mm!. The number of dislo-
cation sources and obstacles also remain the same on each
plane~3 and 10, respectively!, but the total number of dislocation
sources and obstacles for 6, 53, and 160 slip planes are app
mately 1/3, 3, and 9 times of those shown in Fig. 1 for 18 s
planes. The distance between the end of loading region and
nearest slip plane is 106.25 nm for the solid with 6 slip plan
and this distance becomes 6.25 nm for 18, 53, and 160 slip pla
Figure 2 shows the applied pressure normalized by the You
modulus versus the indentation depth for above four sets of
planes, where the indentation depth is the maximum normal
placement~under the pressure! at the symmetry line. It is clearly
observed that the curves for 18, 53, and 160 slip planes are es

Fig. 2 The applied pressure „normalized by the Young’s
modulus … versus the indentation depth for the 2 mmÃ2 mm re-
gion in Fig. 1 with 6, 18, 53, and 160 slip planes
Transactions of the ASME
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tially the same, but the curve for 6 slip planes shows a m
stiffer material response. The latter is therefore called the sou
limited dislocation generation.

4 Concluding Remarks
The present note shows that, for source-limited dislocation g

eration~e.g., 6 slip planes with 18 dislocation sources!, the mate-
rial may display a stiff response. Once there are enough disl
tion sources~e.g., 18, 53, or 160 slip planes with 54, 159, and 4
dislocation sources, respectively!, the overall plastic response o
the solid becomes independent of the dislocation source distr
tion. The present model oversimplifies dislocation activities~e.g.,
two-dimensional analysis, one set of slip planes, disloca
sources!, but the above conclusion on source-limited dislocatio
in nanoindentation should hold qualitatively.
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