JOURNAL OF SPACECRAFT AND ROCKETS
Vol. 41, No. 3, May—June 2004

Engineering Notes

ENGINEERING NOTES are short manuscripts describing new developments or important results of a preliminary nature. These Notes cannot exceed six
manuscript pages and three figures; a page of text may be substituted for a figure and vice versa. After informal review by the editors, they may be published
within a few months of the date of receipt. Style requirements are the same as for regular contributions (see inside back cover).

Minimum Mass Design of Insulation
Made of Functionally Graded Material

Huadong Zhu,* Bhavani V. Sankar,” and Raphael T. Haftka*
University of Florida, Gainesville, Florida 32611-6250
Satchi Venkataraman®
San Diego State University,
San Diego, California 92182-1308
and
Max Blosser"
NASA Langley Research Center, Hampton, Virginia 23681

1. Introduction

ETAL foams! are candidates for advanced thermal protection

systems® (TPS) for future reusable launch vehicles. Such
multifunctional structures would insulate the vehicle interior from
aerodynamic heating as well as carry primary vehicle loads. Varying
the density, geometry, and/or material composition from point to
point within the foam can produce functionally graded materials
(FGM) that might be superior to uniform materials.

Bhattacharya et al.? investigated the heat transfer in metal foams
based on a model consisting of two-dimensional array of hexago-
nal cells. Boomsma and Poulikakos* developed a model for heat
conduction in fluid-saturated metal foams with tetrakaidecahedron
cell geometry. In this Note we use a simple heat-transfer model
developed by Glicksman® for foams. The model is used to derive
the optimality condition and demonstrate that the insulation mass
can be minimized by using graded foams. Venkataraman et al.®
developed a criterion for minimizing heat conduction through an
open-cell titanium foam with variable cell size through its thick-
ness. The current study seeks to identify density profiles that can
yield improvements in weight efficiency compared to materials with
uniform density. These results can then be used to direct research
into improved modeling of FGM that will be used to refine the ini-
tial optimization. The results could also be used to select promising
TPS configurations for testing. The TPS problem is inherently a
transient one. However, we solve the simpler steady-state problem

Presented as Paper 2002-1425 at the AIAA 43rd Structures, Structural
Dynamics, and Materials Conference, Denver, CO, 22 April 2002; received
6 March 2003; revision received 5 December 2003; accepted for publication
10 December 2003. Copyright © 2004 by the authors. Published by the
American Institute of Aeronautics and Astronautics, Inc., with permission.
Copies of this paper may be made for personal or internal use, on condition
that the copier pay the $10.00 per-copy fee to the Copyright Clearance
Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code
0022-4650/04 $10.00 in correspondence with the CCC.

*Graduate Student, Department of Mechanical
Engineering.

TProfessor, Department of Mechanical and Aerospace Engineering;
sankar@ufl.edu. Associate Fellow AIAA.

Distinguished Professor, Department of Mechanical and Aerospace En-
gineering. Fellow AIAA.

§ Assistant Professor, Department of Aerospace Engineering and Engi-
neering Mechanics.

IResearch Engineer, Metals and Thermal Structures Branch.

and Aerospace

467

to gain understanding of the effects of using functionally graded
insulations.

II. Effective Thermal Conductivity of Metal Foam

For the purpose of deriving the homogeneous properties, the foam
is idealized as having rectangular cells of uniform size. We then ob-
tain the effective conductivity & as a function of local volume frac-
tion. Heat transfer through porous metal foams involves a number
of heat-transfer modes. Equations used in this Note for gas conduc-
tion, metal conduction, and radiation are developed by Venkatara-
man et al.® Convection effects, which are much smaller than the
aforementioned modes, are neglected. For a perfect cubic cell, the
volume fraction V; of metal in the open-cell foam, referred to as
solidity, is given by

Vs = jn(ds/a)’ )
where a is the size of the unit cell and d; is the strut diameter.

The overall effective thermal conductivity as function of temper-
ature and volume fraction consists of the contributions of all modes
of heat transfer. We assume that the medium is optically thick. The
optical thickness is defined as the ratio of the characteristic length to
photon mean free path, and for the metal foams used in our study it
is always larger than 10. Consequently, the contributions of the three
modes of heat transfer, that is, gas conduction, metal conduction,
and radiation, can be linearly combined as

k(T, Vi) =0 =Vpk, + ky + k, 2)
Expressions for k,, k,,, and k, can be found in Venkataraman et al.t

The variation in density is achieved by tailoring the cell size while
keeping the strut diameter fixed at 0.05 mm (0.002 in.). For dense
foams, cell size is small; heat transfer is dominated by conduction,
and so the effective conductivity is a monotonic function of solid-
ity. For higher temperatures or low-density foams, radiation is more
important, and larger cell size increases the radiative heat transfer
so that the effective thermal conductivity increases with decrease
in foam density. This leads to a minimum value of effective ther-
mal conductivity as the density is varied from the minimum to the
maximum allowable value.

III. Optimality Criterion for Minimum Mass

We consider an insulation panel of thickness # with a given heat
flux Qy and temperature limits 7,, on its hot side (x = /) and a given
temperature Ty on its cool side (x =0), as shown in Fig. 1. For the
purpose of illustration, the temperatures Ty and 7,, are assumed as
400 and 1500 K, respectively. These temperatures, respectively, are
the maximum temperatures the structure and the TPS can withstand.
‘We assume that there is very little heat transfer in the plane of panel,
so that the problem can be treated as one dimensional. As mentioned
earlier, we consider the steady-state heat conduction in this Note.

The steady-state heat transfer equation and boundary conditions

are
0 oT
— (k—) =0 (3a)
ax ax
oT
k—| = Qo—oT*(h) (3b)
0x P
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Fig. 1 Schematic of heat transfer in insulation. Qy is the applied aero-
dynamic heating, and trT;‘” represents the heat radiated back into space.

TO) =T, (o)

where o is the Stephan—Boltzmann constant. Later we will use the
constraint

T(h) =Ty (3d)

in order to determine the thickness / of the insulation. Actually
we will use the equality constraint 7' (h) =T, for it will reduce
the amount of heat transferred to the insulation by increasing the
radiated heat. Combining Eqs. (3a), (3b), and (3d), we obtain the
governing equation as

ka—T—Qo+oT,;‘=0 (3e)
ax
For the purpose of the illustration of our procedure, we have
assumed the emittance of the surface as unity. In reality there will
be a facesheet covering foam. If we assume that the facesheet is very
thin and has very high conductivity, then its thermal resistance can
be neglected.
The density of the foam p is given by p = p;; V;, where p;, is the
mass density of the strut material and V is the solidity of the foam.
The mass per unit area of the TPS m is

h
m = p;f Ve(x)dx “
0

Our objective is to minimize m subject to the constraint given by
Eq. (3e). Using a Lagrange multiplier A(x) for the constraint, the
necessary conditions for the optimum are obtained by looking for
stationary points of the Lagrangian L

h
L=/ F(x,T,V;,T")dx 5)
0

where
F=V;+7x)(kT" = Qo +oT,) (6)

and (- =d(-)/dx.
The Euler-Lagrange equations corresponding to Eq. (5) are

oF d ([ oF oF d (oF
——— | =) =0, — - — =0
vy dx \9V; aT  dx \ T’
Substituting for F in Eq. (7), we obtain
1+ AT’ ok _ 0 AT' ok k) =0 8
ave aT B

Eliminating A(x) from Eq. (8) and also using the governing equation
[Eq. (3a)], we obtain the optimality condition as

r__ k /
r= (ak/avf> ®

Integrating the preceding equation, we derive the optimum solidity
profile as

V(o) = Vie — (10)

ak/aV;
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where Vi is a constant to be determined by the condition 7' (h) =T,
[see Eq. (3d)]. For a given temperature 7 and the integration constant
Ve, Eq. (10) and k(T', V), which is known, determine the optimum
solidity V' and the optimal k* independently of the position .

IV. Numerical Evaluation of Designs That Satisfy
the Optimality Criterion

Equation (10) is solved for the optimal * and V' for a range of
values of Vi, and T, and the results are shown in Fig. 2. The range of
Vi was chosen such that the values of insulation thickness obtained
would be in the useful range for the example. Figure 2 indicates
that there might be two values of V; for a given &, but for minimum
mass we obviously select the lower value, that is, values of V; where
dk/dV, <0.

The values of the optimal conductivity k£* shown in Fig. 2 were
fitted as quadratic polynomials of the temperature for a range of
values of V. (hence thickness) as

K =k"T)=aT* + a>T + a3 (1D

This quadratic approximation allows analytical solution of the
heat conduction Eq. (3e). Substituting the optimum k* = k*(T') from
Eq. (11) into Eq. (3e),

dar Qo —oT?
o207 %m (12)
dx  aiT?+aT + a3

Equation (12) can be integrated to obtain
(@ /3T + (@/DT* + 3T — (Qo — o T)x +co=0 (13)
where
co = —(ar/IT; — (aa/DT5 — asTy (14)

Solving Eq. (13) provides the distribution of temperature across
the thickness of the panel. Repeating the procedure for different
Vies, we find the specific Vi, that satisfies T (h) = T,,. With the op-
timal temperature profile 7*(x) and optimal effective conductive
profile k*, we can find the optimal solidity profile V (x) by solving
k* =k(T*, V;‘) After we obtain V;f = V_;f(x), we substitute it into
Eq. (4) to find the mass per unit area of insulation. Figure 3 shows the
optimal solidity distribution in a FGM for different thicknesses of in-
sulation for the case T (h) =T, = 1500 K and Q, = 300,000 W/m?>.
The corresponding values of V. are shown in Table 1.

For the purpose of comparison, the problem of an optimum (min-
imum mass) TPS having a uniform solidity that satisfies Eq. (3) was
also solved. The procedures are described in Venkataraman et al.
The areal density (mass per unit area) of the insulation is obtained as
the product of thickness and solidity. Figure 4 compares the relative
areal density for uniform and optimal FGM insulation for various
values of thickness of the insulation. It can be seen that the mass

Optimum conductivity as
function of temperature T
and solidity Vf for different thickness
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Fig. 2 Loci of optimum solidity values for various values of thickness.
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Table 1 Integration constants Vg, corresponding
to different insulation thicknesses

Vie (x1072) h (x1072 m)
-35 3.79
—-3.25 3.82
-3.0 3.85
—2.75 3.89
—-2.5 3.93
—2.25 3.99
-2.0 4.05
—1.75 4.13
—1.50 4.23
—1.25 4.36
—1.00 4.54
0.035
0.03
h=0.0379m
> 0.025
he]
3
g 0.02
5]
> 0015
Increasing values of thickness
0.01
0.005 i i . i
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x Thickness coordinate (m)

Fig. 3 Optimum solidity profiles for various thickness of insulation.
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Fig. 4 Comparison of mass per unit area for functionally graded and
uniform solidity insulations.

savings are higher for thin insulation with about 8.6% less mass for
3.79 cm and only about 3.6% savings for 4.54 cm.

V. Summary

We studied the problem of one-dimensional steady-state heat con-
duction in metallic foams used as thermal protection systems with
varying density in the thickness direction. The thermal conductivity
of the foam is a function of temperature as well as the density, and
it has a minimum value in the range of densities of our interest.
An optimality criterion in the form of a differential equation was
derived in order to minimize the total mass of the insulation for a
given heat input. The heat-conduction equation and the optimality
equation were solved numerically to obtain optimum density pro-
files for various values of thickness of the insulation. It is shown that
for a given thickness using functionally graded foams can reduce
the mass of the insulation panel.
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Introduction

HE development of computational-fluid-dynamics procedures

has progressed rapidly during the past two decades. Simulta-
neously, the rapid development in computer hardware has not only
matched the explosive algorithm development but has indeed pro-
vided, and continues to provide, its impetus. Together, the com-
putational resources are now available for the numerical simula-
tion of the flow about many complex three-dimensional aerospace
configurations. An efficient and accurate flow solver is the key to
developing a useful engineering tool for the analysis of complex
three-dimensional flow phenomena about complex configurations.
Consequently, there is an avid interest in finding solution method-
ologies that will produce results in less time and cost, compared
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