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Optimal Functionally Graded Metallic Foam Thermal Insulation
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Optimum density profiles that minimize heat transmission through a metal foam thermal insulation under one-
dimensional steady-state conditions are investigated. The effective thermal conductivity of the foam is derived in
terms of cell parameters and the temperature. Maximizing the temperature at the outside wall of the insulation
minimizes the heat conduction through the insulation because this maximizes the radiated heat. An optimality
condition is derived, and the optimization problem is reduced to that of an ordinary, but a nonlinear differential
equation, which is solved numerically. The optimum density variation through the thickness of the insulation for a
given incident heat flux and the transmitted heat are presented for graded and uniform foams with open and closed
cells. For open-cell foams, functional grading of the foam density can reduce the heat transfer through the foam for
given thickness. Conversely, for a specified amount of heat transmission through the foam, the functionally graded
foam insulation can be made thinner than uniform density foam insulation.

Nomenclature
a = foam cell size in plane transverse to direction

of heat transfer
ai = polynomial coefficients used to approximate

optimum foam conductivity as function
of temperature

b = foam cell size in the direction of heat transfer
dg = gas collision diameter
ds = diameter of the struts of open-cell foam
h = thickness of foam insulation
K B = Boltzmann’s constant
ke = effective heat transfer coefficient for the foam due

to combined gas and solid
kg = effective conduction heat transfer coefficient of gas

medium inside the foam cells
k∗

g = thermal conductivity of gas at one atmosphere
pressure

k∗
m = thermal conductivity of the material

used for the foam
kr = effective heat transfer coefficient for radiation

transfer inside the foam cells
ks = effective heat transfer coefficient for conduction

through solid medium
k∗(T ) = optimum heat transfer coefficient for a given

temperature T
k(ρ, T ) = effective conductivity of foam (function of density

and temperature)
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L = Lagrangian function for the optimization problem
lc = characteristic length for pores/cells in porous

media/foams
P = pressure of gas medium inside the foam
Pr = prandtl number
Q0 = incident heat flux on the hot/outer surface of the foam
Q̄0 = heat flux transmitted through the foam insulation
T = temperature, K
Th = temperature on hot/outer surface
T0 = temperature on cool/inner surface
V f = volume fraction of material in foams
V ∗

f = optimum volume fraction of foams that minimizes
heat transfer

x = coordinate direction along the thickness
of the foam insulation

α = accommodation coefficient
γ = specific heat ratio
ε = surface emissivity
λm = mean free path length of gas molecules
ρ = apparent density of foam
ρ∗

m = density of material used in foam
σ = Stefan–Boltzmann constant

Introduction

M ETAL foams1,2 are being investigated for use in multifunc-
tional structures for reusable launch vehicles. Such multi-

functional structures would insulate the vehicle interior from aero-
dynamic heating, as well as carry primary vehicle loads. Varying the
density, geometry, and/or material composition from point to point
within the foam can produce functionally graded materials (FGM)
that may function more efficiently. There is an increasing body of
theory and experiments on such materials; however, there is still a
great deal of uncertainty as to what can be manufactured in terms
of density and material architecture and their variations from point
to point. There is similar uncertainty in the structural and thermal
properties of the resulting FGM.

To guide development and testing of new FGMs for thermal pro-
tection systems, it is important to identify situations where FGMs
could contribute most in terms of efficiency gains. This paper seeks
density profiles that maximize thermal insulation efficiency based
on currently available models for effective thermal conductivity of
metallic foams. In the meantime, new micromechanical models need
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to be developed for functionally graded thermal protection material
systems.

In this paper, an optimality criterion is developed for minimizing
heat conduction through metal foam with variable cell size through
its thickness. Analytical expressions are developed to represent three
modes of heat transfer through the foam: solid conduction, gas con-
duction, and radiation. The resulting effective thermal conductivity
of the foam is a function of temperature, pressure, properties of
the foam material, and the foam geometry. The optimization prob-
lem is to determine the density distribution that minimizes the one-
dimensional steady-state heat conduction through the thickness of
titanium foam. The optimality condition is used to obtain the op-
timum density profile. The functionally graded foam and uniform
density foam are compared to illustrate performance payoffs pro-
vided by optimization of graded foam properties. Derivations and
results are presented in the body of the paper for open-cell foams
and in the Appendix for closed-cell foams.

Effective Thermal Conductivity of Metal Foam
An analytical model of the heat transfer through the foam is re-

quired to investigate the optimum design of functionally graded
metallic foam insulations. Here we investigate open-cell foam with
spatial variation in its cell size. Heat transfer through porous metal
foams involves a number of heat transfer modes. Equations are de-
veloped for gas conduction, metal conduction, and radiation. Forced
convection and natural convection are also possible modes of heat
transfer through metal foams. Designing the insulating system to
avoid airflow paths can eliminate forced convection. Natural con-
vection in metal foams is a complex function of the air density and
foam geometry and orientation with respect to gravity or inertial
forces. Much of the heat transfer during atmospheric entry occurs
when air density is low, thereby inhibiting natural convection. Small
pores, which tend to reduce the other modes of heat transfer, also
inhibit natural convection within the foam. Foams could be oriented
at almost any angle with respect to gravity and inertial forces if used
over a significant portion of a vehicles surface. Therefore, convec-
tion is neglected for the current study.

The heat transfer equations presented here are based on an ideal-
ized model of metal foam, where the foam is modeled as a periodic
rectangular cellular material3 with a repeating volume element, as
shown in Fig. 1 for the open-cell foams. More detailed complex
models4,5 of open-cells foams that accurately represent the structure
of open-cells foams have been proposed more in recent literature.
However, such models have not been experimentally verified at high
temperatures. Models similar to those used in this paper were also
compared by Sullins and Daryabeigi6 to experimental results and
shown to be valid. The simplified model used here, although quite
simplistic, has been shown to describe the effect of pore size and
material density on the heat transfer modes. The model used here
was found to exhibit the same dependence of the heat transfer on
density and pore cell size as reported by Paek et al.7

The dimensions of the cell are given by a in the plane transverse to
the direction of heat transfer and b in the direction of heat transfer.
The diameter of the struts of open-cell foam is given by ds . The
volume fraction V f of metal in the open-cell foam, referred to as
solidity, is given by the expression

V f = volume in struts

total volume
= (8a + 4b)

(
πd2

s

/
4
)/

4

a2b

= π

4

(
2

a

b
+ 1

)(
ds

a

)2

(1)

Fig. 1 Rectangular representative
volume element used for heat transfer
model in open-cell foam.

For a perfect cubic cell, the expression for solidity reduces to the
following equation:

V f = 3
4 π(ds/a)2 (2)

The effective heat transfer coefficient is calculated as the linear com-
bination of three components: conduction through the gas, conduc-
tion through the metal, and radiation. The expressions used for the
different heat transfer modes are briefly described in the following
sections.

Gas Conduction
Air conduction is modeled in the voids in the metallic foam. Away

from any solid boundaries, the thermal conductivity of a gas is in-
dependent of pressure.8 However, gas molecules interact with solid
surfaces in such a way that the thermal conductivity of a gas enclosed
in a small cavity does vary with pressure. The pressure-dependent
thermal conductivity for air inside the foam, kg , is calculated using
the following equation9:

kg = (1 − V f )

{
k∗

g

/[
1 + 4

(2 − α)

α

γ

(γ + 1)

1

Pr

λm

lc

]}
(3)

where V f is the volume fraction of the solid material in the foam,
k∗

g is the air conductivity at 1-atm pressure, α is the accommoda-
tion coefficient (a measure of the average efficiency of the energy
exchange between gas molecules and solid surfaces, assumed equal
to 1.0), γ is the specific heat ratio (assumed equal to 1.4 for air), λm

is the mean free path length, and lc is the characteristic length of the
pores in the foam. The factor (1−V f ) is introduced in the expression
to account for the reduced volume fraction of gas in porous foam.
The temperature dependence of the air conductivity and the Prandtl
number are calculated using the expressions (see Ref. 10)

k∗
g = 3.954 × 10−3 + 7.7207 × 10−5T − 1.6082 × 10−8T 2 (4)

Pr = 0.7086 − 3.7245 × 10−6T + 2.2556 × 10−8T 2 (5)

where T is absolute temperature (degrees Kelvin). The mean free
path length λm , which represents the mean distance traveled by gas
molecules between collisions with other molecules, is a function of
temperature T and pressure P and is given by the expression

λm = K B T√
2πd2

g P
(6)

where K B is the Boltzmann constant (in joules per degrees Kelvin)
and dg = 3.65009 × 10−10 is the gas collision diameter in meters.

All of the preceding quantities are readily apparent, except for the
characteristic length. For closed-cell foams, an obvious choice for
characteristic length is the cell size in the direction of heat transfer.
For open-cell foams, the choice of characteristic length is not as
straightforward. In this study, the characteristic length for open-
cell foams was calculated using the following equation derived for
fibrous insulation11:

lc = (π/4)(ds/V f ) (7)

Solid Conduction
Solid conduction through the foam can be complicated due to

the geometry of the pores. A comprehensive study of heat trans-
fer through polymeric foams was published by Glicksman.3 The
following expressions, derived by Glicksman, are more applicable
to realistic foam geometries than expressions that could be derived
directly from the simplified geometry in Fig. 1.

For open-cell foams, the heat transfer coefficient for conduction
heat transfer through the solid phase ks is given as

ks = 1
3 k∗

m V f

√
a/b (8)
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where k∗
m is the metal conductivity. For titanium foam used in our

study, the temperature-dependent metal conductivity (watts per me-
ter per degree Kelvin) is given by12

k∗
m = 2.7379 + 1.3462 × 10−2T − 1.7207 × 10−7T 2 (9)

Radiation
Radiation through foams is also complicated by foam geometry.

Glicksman3 has addressed the more complex problem of translucent
polymeric foams, but also developed expressions for opaque open-
and closed-cell foams. Glicksman’s equations (for open-cell foams)
expressed using the notations of this paper are

kr = 4[ε/(2 − ε)]σ T 3b (10)

where kr is in watts per meter per degree Kelvin, σ is the Stefan–
Boltzmann constant with units of Wm−2K−4, ε is the emittance of
the internal surface of the foam (assumed as 0.5 for calculations in
this paper).

Overall Effective Thermal Conductivity
The overall effective thermal conductivity as function of temper-

ature and volume fraction consists of the contributions of all modes
of heat transfer. We assume that the medium is optically thick. The
optical thickness is defined as the ratio of the characteristic length to
photon mean free path, and for the metal foams used in our study, it
is always larger than 10. Consequently, the contributions of the three
modes of heat transfer, namely, gas conduction, metal conduction,
and radiation, can be linearly combined as

ke = kg + ks + kr (11)

The effective thermal conductivity at 1 atm pressure, for the range
of temperatures and densities chosen in our study, is shown in
Figs. 2 and 3. The variation in density was achieved by chang-
ing the cell size with the strut diameter kept constant at 0.05 mm
(0.002 in.). Fixing the strut diameter leads to large cell sizes for
low-density foams. For dense foams, when heat transfer is domi-
nated by conduction, this is of little consequence, and so the ef-
fective conductivity is monotonic function of solidity. For low den-
sity, however, large cell sizes increase the radiation heat transfer kr

so that at low solidities the effective conductivity reaches a min-
imum as shown in Fig. 3. The contribution of the radiation com-
ponent significantly increases with temperature because it is pro-
portional to the third power of temperature. Therefore, the mini-
mum conductivity is reached at higher solidities at high tempera-
tures as shown in Fig. 3. Because the temperature varies through the

Fig. 2 Effective thermal conductivity for range of temperatures T and volume fraction Vf and dependence of the components of the effective
conductivity on the foam pore size a obtained for a titanium open-cell foam with fixed strut diameter of 0.05 mm.

thickness of the insulation, this indicates that the solidity (volume
fraction) distribution can be optimized to minimize the heat transfer
through the foam. In the next section, we derive the optimality con-
dition that describes the optimum density distribution for minimal
heat transfer.

Optimality Criterion for Minimum Heat Transfer
We consider an insulation panel (Fig. 4) of thickness h with a

given heat flux Q0 on its hot side, x = h, and a given temperature
T0 on its cool side, x = 0. We assume that there is very little heat
transfer in the plane of panel, so that the problem can be treated as
one dimensional. Furthermore, the transient effects are neglected.

Fig. 3 Effective conductivity as function of solidity for different tem-
peratures; asterisks denote optimum conductivity points.

Fig. 4 Schematic of one-dimensional heat conduction in FGM foam
insulation.



2358 VENKATARAMAN ET AL.

Our objective is to minimize the heat transmitted through the foam
insulation for a given thickness. The same can be achieved by max-
imizing the outside temperature because this increases the radiation
at the wall and, hence, minimizes the heat being transmitted through
the foam. For one-dimensional heat transfer though the foam with
radiation at its outside wall, the steady-state heat transfer equation
and boundary conditions are

kT ′ = Q = Q0 − σ T 4
h (0 ≤ x ≤ h) (12)

T (0) = T0 (13)

where prime denotes differentiation with respect to x . The conduc-
tivity is given as k = k(ρ, T ). We want to maximize the temperature
at x = h, subject to Eq. (2) as a constraint, and so we form the
Lagrangian

L = Th −
∫ h

0

λ(x)
[
kT ′ − Q0 + σ T 4

h

]
dx (14)

and take the variation

δL = δTh −
∫ h

0

λ(x)[δkT ′ + kδT ′ dx + 4σ T 3(h)δTh] dx (15)

To evaluate this integral we use

δk = ∂k

∂ρ
δρ + ∂k

∂T
δT (16)

∫ h

0

λkδT ′ dx = λkδT |h0 −
∫ h

0

(λk)′δT dx (17)

Hence, we obtain

δL =
[

1 − 4σ T 3
h

∫ h

0

λ dx − λ(L)k(L)

]
δTh

−
∫ h

0

T ′λ
∂k

∂ρ
δρ dx +

∫ h

0

(λk)′δT dx −
∫ h

0

λ
∂k

∂T
T ′δT dx

(18)

This gives us the following optimality conditions:

T ′λ
∂k

∂ρ
= 0, (λk)′ − λT ′ ∂k

∂T
= 0 (19)

In the first condition, T ′ = 0 implies uniform temperature that cor-
responds to no heat transfer. Therefore, the optimality condition
becomes

∂k

∂ρ
= 0 (20)

This optimality condition corresponds to the expected result that for
given T we seek the density that minimizes k.

On expanding the terms of the second condition, we have

λ′k + λ

(
∂k

∂ρ
ρ ′ + ∂k

∂T
T ′

)
− λT ′ ∂k

∂T
= 0 (21)

On substituting Eq. (20) in Eq. (21) and simplifying, we obtain

λ′k = 0 or λ = c(const) (22)

For a fixed value of the strut diameter, the effective conductivity
(heat transfer coefficient) is a function of temperature T and volume
fraction or solidity V f , that is,

k = k(T, V f ) (23)

Because the density is proportional to the volume fraction
(ρ = ρ∗

m V f ), the optimality condition (20) can be rewritten as

∂k

∂V f
= 0 (24)

Substituting the expression for effective conductivity in the optimal-
ity condition provides us the values of optimum solidity (or volume
fraction V ∗

f ) and heat transfer coefficient k∗ as a function of tem-
perature.

Optimality Criterion for Minimum Thickness
Instead of using the functional grading to reduce the fraction of

heat that is transmitted through the wall, it is possible to reduce
the thickness for a given value of transmitted heat. To minimize the
thickness, it is convenient to write the heat transfer equation as

dx

dT
= k

Q̄0

(25)

where

Q̄0 = Q0 − σ T 4
h (26)

On integrating Eq. (24), we obtain

h =
∫ Th

T0

dx

dT
dT =

∫ Th

T0

k

Q̄0

dT (27)

with

k = k(ρ, T ) (28)

The variation of Eq. (28) is of the form

δh =
∫ Th

T0

(
∂k

∂ρ
δρ

)
dT

Q̄0

(29)

from which the optimality criterion is once again

∂k

∂ρ
= 0 (30)

The discrete form of Eq. (24) given by


x = (k/Q̄0)
T (31)

is used for the numerical evaluation of the FGM thickness. The
temperature difference between inside and outside wall (Th − T0) is
divided into small intervals 
T , and for each interval, the optimum
thickness is calculated using


xi = [
k∗(Ti )

/
Q̄0

]

T (32)

where k∗(Ti ) is the minimum thermal conductivity corresponding
to the average temperature in the interval Ti .

Numerical Evaluation of Designs
from Optimality Criterion

The dependence of the effective conductivity or heat transfer co-
efficient as a function of temperature and solidity is shown in Figs. 2
and 3. Notice that for each temperature there is a unique value of
the heat transfer coefficient or solidity at which the optimality con-
dition is satisfied. The values of the conductivity k∗ and volume
fraction that satisfy the optimality condition were obtained numeri-
cally (Fig. 3). The optimum heat transfer coefficient k∗ and solidity
V ∗

f are then fitted with using a quadratic polynomials to obtain
algebraic expressions that describe their dependence on tempera-
ture approximated by a polynomial expression (Fig. 5). On sub-
stituting the polynomial approximation for the optimum thermal
conductivity

k = a0 + a1T + a2T 2 (33)
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Fig. 5 Optimum effective heat transfer coefficient (conductivity) and volume fraction (solidity) of titanium open-cell foam as function of temperature
and quadratic polynomials fitted to data.

Fig. 6 Temperature distribution through the thickness of the insulation for different values of incident heat flux that satisfy optimality conditions
for maximum outside temperature.

into the heat transfer equation and integrating in through the thick-
ness, we obtain the following algebraic equation which is solved to
obtain Th :
[
a0Th + (a1/2)T 2

h + (a2/3)T 3
h

] + hσ T 4
h

= Q0h + [
a0T0 + (a1/2)T 2

0 + (a2/3)T 3
0

]
(34)

Once Th is known, the heat transfer equation is integrated to obtain
the temperature profile to obtain it the optimum density profile,
V ∗

f (t), through the insulation.
The temperature distribution in the insulation of fixed thickness

h = 0.01 m, inside temperature T0 = 400K , and different values of
incident heat flux, from 0.01 × 106 to 1 × 106 W/m2 are calculated
using the expression derived earlier and plotted in Fig. 6. Figure 6
is as expected, that is, when the thickness h and inside wall tem-
perature T0 are kept constant and heat flux at surface is increased,

the outside temperature increases. At higher temperatures, the tem-
perature distribution is nonlinear because the radiation component
becomes significant. The distribution of cell size or solidity cor-
responding to the temperature distribution (Fig. 6) can be calcu-
lated using the polynomial expressions for solidity shown in Fig. 5.
These optimum through the thickness distributions of volume frac-
tion are shown in Fig. 7. The optimum graded density insulation
is compared with uniform density insulation for different values of
the incident heat flux. Figure 8 shows the ratio of the maximum
temperature attained at the outside wall by the optimized graded
density and uniform density insulation. The graded density insula-
tion results in 0.3–0.6% higher temperatures. These small differ-
ences in temperature result in large differences in the heat radiated
at the outside wall because radiation is proportional to the fourth
power of temperature. An accurate measure of performance of ther-
mal insulation is the fraction of the heat that is transmitted to the
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Fig. 7 Comparison of volume fraction (density) distributions obtained for the optimum graded and optimum uniform density insulation for different
values of incident heat flux.

Fig. 8 Comparison of maximum temperature attained using optimum
constant density and optimum functionally graded density foams.

inside. Ideally, we want to reduce this to be as low as possible.
Figure 9 presents the percentage of heat transmitted through the
foam insulation for different values of the incident heat flux on the
outside surface. The fraction of heat transmitted through the op-
timum graded density foam insulation is compared to that in the
optimized uniform density foam insulation. The uniform density
design was obtained by numerical maximization of outside wall
temperature by varying the (single variable) foam density. Compar-
isons of the transmitted heat for the two designs indicate that the
functional grading in insulation density reduces the heat transfer
by 8–10%.

Figure 10 shows the ratio of the thicknesses of functionally graded
density insulation and uniform density insulation. At low heat flux
condition, the conduction mode dominates the heat transfer. The
FGM foam can reduce the density of the foam by increasing the
cell size in the low-temperature region of the foam. The uniform
insulation increases the foam cell size throughout the thickness,
thereby incurring a larger increase in thickness. At higher heat flux
conditions where radiation becomes dominant, the FGM reduces
heat transfer by reducing cell size at the outside wall (hotter re-

Fig. 9 Comparison of heat transmitted through open-cell foam insu-
lation of optimum uniform and optimum functionally graded density.

gion). The uniform density foam cannot reduce the cell size as
effectively as the FGM foam because the small cell size signif-
icantly increases the conduction heat transfer at the inside wall.
The cell size chosen for the uniform density foam is a compro-
mise between cell sizes needed for minimizing conduction and
radiation mode heat transfer. The optimum density reduces the
thickness of the insulation between 9 and 12.5% depending on
the value of the heat flux. The thickness of the graded insulation
combined with the expression for the optimum volume fraction
(Fig. 5) was used to calculate the mass of the equivalent graded
thermal insulation. The ratio of the mass of the graded density and
uniform density of identical performance is plotted in Fig. 11 for
open-cell foam. The reduced thickness of the thermal insulation
comes with a small increase in weight (4.5–9.0%). Similar calcu-
lations were repeated for closed-cell foams in the Appendix. These
showed that for closed-cell foams the gains in performance are
miniscule. This is because in closed-cell foams the conductivity
of the foam solid material is a significant portion of the effective
conductivity.
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Fig. 10 Ratio of optimum functionally graded density insulation thickness compared to the optimum uniform density insulation thickness.

Fig. 11 Mass of optimum functionally graded insulation compared to uniform insulation that exhibits identical performance (same surface temper-
atures).

Summary
Optimum density distribution of a thermal insulation for steady-

state heat conduction is studied for open- and closed-cell foams.
The effective thermal conductivity of the foam is derived in terms
of the strut diameter, the cell size, and the temperature. Maximizing
the temperature at the outside wall of the insulation, which max-
imizes the heat radiated, minimizes the heat transmitted through
the insulation. An optimality condition is derived, and the opti-
mization problem is reduced to that of an ordinary, but a nonlinear
differential equation, which is solved numerically. The same op-
timality condition is also found to hold for minimizing the thick-
ness of the insulation. In open-cell foams, the heat transfer mode
is predominantly radiation at high temperatures and conduction
at low temperatures. For any given temperature, there is an op-
timum density that minimizes the heat conductivity through the
foam. The optimal density distributions reduce the heat transmitted
through the closed-cell foam insulations by up to 10% compared to
the optimum uniform density insulation. The minimum thickness

functionally graded insulation is up to 12% thinner compared to
the uniform density; however, it is slightly heavier. In the closed-
cell insulation, heat transfer is predominantly by conduction and,
hence, does not show significant benefit in tailoring the density
distribution.

Appendix: Equations and Results
for Closed-Cell Foam Insulation

In this Appendix, we develop the heat transfer equations for
closed-cell foam. The optimality condition derived in the paper is
applied to closed-cell foams to calculate performance measures such
as heat transmitted through the foam and the minimum foam thick-
ness for a given transmitted heat.

Effective Thermal Conductivity
The model assumes the cells are hollow rectangular prisms hav-

ing dimensions (a × a × b) and wall thickness of t . The expres-
sion for the solidity for the rectangular closed-cell foam shown in
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Fig. A1 is

V f = volume in walls

total volume
= (2a2 + 4ab)(t/2)

a2b
= t

a

(
a

b
+ 2

)
(A1)

This simplifies to the following form for a cubic cell of size a:

V f = 3(t/a) (A2)

Gas Conduction
The gas conduction equation presented for open-cell foams is

valid for closed-cell foams also. However, the characteristic dimen-
sion lc is the size of the cell,

lc = a (A3)

Solid Conduction
The heat conduction path in closed-cell foams is through the cell

walls. For the idealized model used here, we assume there is no
concentration of mass at the edges (struts) and all mass is uniformly
distributed in the cell walls. For this assumption, the simple con-
duction model developed by Glicksman [Eq. (5.38) in Ref. 3] when
expressed using the present notation is

ks = 2
3 k∗

m V f
4
√

(a/b) (A4)

where k∗
m is the temperature dependent conductivity of the solid

material (metal) in the foam.

Radiation
The expression for radiation heat transfer in idealized closed-

cell foam with no struts as obtained from Glicksman [Eq. (5.60) in
Ref. 3] is

kr = (16/3)
(
σ T 3b

/
4.1

√
V f

)
(A5)

where kr is in watts per meter per degree Kelvin and σ is the Stefan–
Boltzmann constant.

The effective transfer coefficient is calculated as before by adding
the three terms. The dependence of the heat transfer coefficient on

Fig. A1 Unit cell of idealized
closed-cell foam; each wall uniform
thickness t, direction with cell di-
mension b indicates heat transfer
direction.

Fig. A2 Effective thermal conductivity for range of temperatures T and volume fraction Vf and dependence of the components of the effective
conductivity on foam pore size obtained for titanium closed-cell foam with fixed wall thickness of 0.05 mm.

temperature and volume fraction is shown in Fig. A2. The depen-
dence of the effective heat transfer coefficient on temperature and
density (volume fraction) for closed-cell foam is qualitatively simi-
lar to open-cell foam, despite the differences in the influence of cell
size on their heat transfer modes. At each temperature, there is an
optimum value of volume fraction that minimizes the heat transfer
equation. The optimum volume fraction and the corresponding value
of the heat transfer coefficient were calculated numerically using
the heat transfer equation presented in the paper with modifications
mentioned earlier for closed-cell foams. The numerical obtained
values of optimum volume fraction and heat transfer coefficient are
fitted with polynomial functions that describe their dependence on
temperature (Fig. A3).

The temperature distribution through the thickness of the insula-
tion is obtained using the polynomial expression for the optimum
effective heat transfer coefficient in the heat conduction equations
as presented before by integrating the heat transfer equation. The
outside wall temperature is then used to compute the amount of heat
radiated at the outside surface on which the aerodynamic heating
occurs. The heat transmitted as a fraction of the incident heat flux is
calculated for different values of the incident heat flux (Fig. A4). For
identical values of incident heat flux, the heat transmitted thought the
best uniform density insulation is also calculated and compared to
the nonuniform (functionally graded) density foam insulation. For
closed-cell foam, using varying density provides only minuscule
improvement to the thermal insulation performance. Figure A4 also
shows the heat transmitted through the open-cell foam insulation is

Fig. A3 Optimum effective heat transfer coefficient (conductivity) and
volume fraction (solidity) of titanium open-cell foam as function of tem-
perature and quadratic polynomials fitted to data.
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Fig. A4 Comparison of heat transmitted through open-cell and closed-
cell foams with uniform and functionally graded density through the
thickness in the insulation.

significantly lower than the closed-cell foam insulation. In the case
of closed-cell foam, conduction is the dominant heat transfer mode
and, therefore, does not benefit from varying the density through
the thickness.
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