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Increasing Allowable Flight Loads
by Improved Structural Modeling

Erdem Acar,∗ Raphael T. Haftka,† Bhavani V. Sankar,‡ and Xueshi Qiu§

University of Florida, Gainesville, Florida 32611

The tradeoffs of allowable flight loads and safety of aerospace structures via deterministic and probabilistic design
methodologies are analyzed. The methodologies are illustrated by performing allowable flight load calculation of a
sandwich panel used in aerospace structures. The effect of using a more accurate prediction technique for interfacial
fracture toughness that combines interfacial fracture toughness with mode mixity instead of using the traditional
model that disregards mode mixity is explored. It was found that by utilizing this more accurate model with the
change in B-basis properties, the deterministic approach allows a 13.1% increase in the allowable flight load and
a reduction of probability of failure by a factor of five. The probabilistic approach allows a 26.5% increase in
allowable flight load, while maintaining the original probability of failure.

Nomenclature
C = capacity of structure, for example, yield stress
eA, eMM = errors in fracture toughness assessment

corresponding to traditional (averaging) method
and method with mode mixity, respectively

eC , eR = error factors for C and R, respectively
erms = rms error
G = strain energy release rate
K1, K2 = mode 1 and 2 stress intensity factors,

respectively
p, pmax = load and critical load, respectively
pallow = allowable flight load
R = response of structure, for example, stress
R2

adj = adjusted coefficient of multiple determination
SF = safety factor
VARC , VARR = variabilities of C and R, respectively
ψ = mode-mixity angle

I. Introduction

S TRUCTURAL design of aerospace structures is still performed
with a deterministic design philosophy. Researchers are con-

stantly improving the accuracy of structural analysis and failure
prediction. This improvement in accuracy reduces uncertainty in
aircraft design and can, therefore, be used to enhance safety. How-
ever, because the record of structural safety in civilian transport
aircraft is very good, it makes sense to ask how to translate the re-
duced uncertainty to increased flight loads or weight reduction if
safety is to be maintained at a specified level. The term allowable
flight load refers here to the maximum allowable load that can be
carried by the structure for a specific failure mode. Currently, there
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is no accepted way to translate the improvements in accuracy to
weight savings or increased allowable flight loads. The objective
of this paper is to take the first step in this direction by utilizing
probabilistic design methodology. Haftka1 describes how the work
of Li et al.2 and Arbocz and Starnes3 to model variability in the
buckling of circular cylinders inspired work in his research group
on using variability control to reduce the weight of composite liq-
uid hydrogen tanks. Qu et al.4 showed that for a fixed probability
of failure, small reductions in variability can be translated to sub-
stantial weight savings. Here we seek to investigate the potential of
improved structural modeling.

Some commercial aircraft that entered service in 1970s or 1980s
are expected to reach their design service life soon. However, be-
cause researchers are constantly improving the accuracy of struc-
tural analysis and failure prediction, the maximum allowable flight
loads of those aircraft can be recalculated to utilize the full po-
tential of their structures. Motivated by this goal, we consider a
given aerospace structure that is already designed, and we aim to
re-calculate the allowable flight load of the structure due to im-
proved analysis. We expect that for some designs, lower allowable
loads will be predicted by the improved analysis, whereas for others
higher allowable flight loads will be predicted. However, because
improved models reduce uncertainty, we may expect an average in-
crease of the allowable flight loads over all designs. An important
focus of the paper is to show that modeling error can masquerade
as observed variability, which can be reduced (or even eliminated)
by a better understanding of the physical phenomenon.

In this paper, we chose a sandwich panel as an example because
the improved model was developed by one of the authors, and we
had good access to the details of the experiments and computations.
Sandwich structures are used in aerospace vehicles due to their low
areal density and high stiffness. Debonding of the core from the face
sheet is a common failure mode in sandwich construction, and the
interfacial fracture is traditionally characterized by a single fracture
toughness parameter. However, in reality, the fracture toughness is
a function of the relative amount of mode 2 to mode 1 (mode mix-
ity) acting on the interface.5 The stiffness of sandwich structures
depends very much on the integrity of the face sheet/core bonding.
Even a small disbond can significantly reduce the load carrying ca-
pacity, especially when the structure is under compressive loads.6,7

Grau et al.8 measured the interfacial fracture toughness as a function
of mode mixity to characterize the propagation of the disbond be-
tween the face sheet and the core. They performed asymmetric dou-
ble cantilever beam fracture tests to determine the interfacial frac-
ture toughness of the sandwich composite and then demonstrated its
application in predicting the performance of a sandwich structure
containing a disbond. The use of mode-mixity-dependent fracture
toughness led to improvement in the accuracy of failure prediction
of the debonded structure. In this paper, we perform probabilistic
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analysis of the debonded sandwich structure analyzed by the deter-
ministic approach by Grau et al.8 to explore a possible increase in
the allowable flight load of the structure.

The following section discusses the design of a sandwich structure
used as an illustration. Section III presents the analysis of structural
uncertainties (error and variability) with the primary perspective of
how to control uncertainty. Discussion of the calculation of B-basis
properties and allowable flight load calculation for sandwich struc-
tures by deterministic design are given in Sec. IV. In Sec. V, the
assessment of the probability of failure of sandwich structures is
presented. In Sec. VI, the tradeoffs of accuracy and allowable flight
load via probabilistic design are discussed. Finally, concluding re-
marks are given in Sec. VII.

II. Structural Analysis of Sandwich Structure
Sandwich panels are susceptible to debonding of the face sheet

from the core. This is similar to the phenomenon of delamination
in laminated composites. Disbonds can develop due to poor man-
ufacturing or during service, for example, due to foreign object
impact damage. The evaluation of damage and prediction of resid-
ual strength and stiffness of debonded sandwich panels is critical
because the disbonds can grow in an unstable manner and can lead
to catastrophic failure. The stiffness of sandwich structures depends
very much on the integrity of the face sheet/core bonding. Even
a small disbond can significantly reduce the load carrying capac-
ity, when the structure is under compressive loads6,7 because the
debonded face sheet can buckle and create conditions at the crack
tip that are conducive for unstable propagation of the disbond. This
problem has become very significant after the historic failure of
the X-33 vehicle fuel tank made up of sandwich panels of polymer
matrix composite face sheets and a honeycomb core.

Fracture at the interface between dissimilar materials is a critical
phenomenon in many multimaterial systems including sandwich
construction. Traditionally, in engineering practice, the interfacial
fracture was characterized by a single fracture toughness parameter
obtained by averaging the interfacial fracture toughness, hereinafter
termed average Gc or G A

c , obtained for some number of K1 and K2

combinations, where K1 and K2 are the mode 1 and mode 2 stress
intensity factors, respectively. Later studies have indicated,5 that
for these multimaterial systems, the interfacial fracture is a strong
function of the relative amount of mode 2 to mode 1 acting on the
interface, hereinafter termed Gc with mode mixity or GMM

c . The
criterion for initiation of crack advance at the interface can be stated
as

G = Gc(ψ), ψ = tan−1(K2/K1) (1)

where Gc is the interfacial fracture toughness, which depends on
the mode-mixity angle ψ . In bimaterial fracture, K1 and K2 are the
real and imaginary parts of the complex stress intensity factor K .
The toughness of interface Gc(ψ) can be thought of as an effective
surface energy that depends on the mode of loading.

Grau et al.8 analyzed a debonded sandwich panel and determined
the maximum internal gas pressure in the core before the disbond
could propagate. They used interfacial fracture mechanics concepts
to analyze this problem. The main premise here is that the crack will

Fig. 1 Model of face-sheet/core debonding in one-dimensional sandwich panel with pressure load.

propagate when the energy release rate equals the fracture toughness
for the core/face-sheet interface. The load and boundary conditions
for the model problem are shown in Fig. 1. Note that due to symmetry
only one-half of the structure is modeled.

The maximum allowable pressure for a given disbond length is
calculated from the energy release rate G0 for a unit applied pressure.
The energy release rate G is proportional to the square of the applied
load or

G = G0 p2 (2)

where p is the applied pressure. This failure assessment is a good
approximation within the limits of a linear analysis. We assume that
the epistemic uncertainty related to this failure function is negligi-
ble compared to the uncertainty in fracture toughness. The critical
pressure pmax can be obtained using

pmax =
√

Gc/G0 (3)

where Gc is the interfacial fracture toughness of the sandwich ma-
terial system obtained from testing.

Grau9 conducted asymmetric double cantilever beam tests to de-
termine the interfacial fracture toughness of the sandwich compos-
ite. [The face-sheet material was A50TF266 S6 class E, fiber desig-
nation T800HB-12K-40B, matrix 3631, and the core sheet material
was Euro-Composites aramid fiber-type honeycomb.] Grau et al.8

performed finite element analyses to compute the mode-mixity an-
gle corresponding to designs tested in experiments. The average in-
terfacial fracture toughness prediction and the fracture toughness in
terms of mode-mixity angle based on their work are shown in Fig. 2.
The continuous line denotes average Gc (G A

c ) and the dashed line
denotes a linear least square to fit to Gc, GMM

c , as a function of mode-
mixity angle. The linear fit has R2

adj = 0.473 and erms = 121.6 N/m.
As shown in Fig. 2, a simple way of determining the interfacial

fracture toughness parameter is to perform fracture toughness tests
for different core thickness, face-sheet thickness, and crack length
combinations, which correspond to different mode-mixity values,
and to take the average fracture toughness value. However, as seen
from Fig. 2, the critical energy release rate is assessed better as a
function of mode mixity. Grau et al.8 represent the critical energy

Fig. 2 Critical energy release rate as function of mode mixity.
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Table 1 Uncertainty classification

Type Spread Cause Remedy

Error Departure of average fleet of aerospace Errors in predicting structural Testing and simulation to
(mostly structure model, for example, failure, construction improve math model
epistemic) Boeing 737-400, from ideal errors, deliberate changes and solution

Variability Departure of individual structure Variability in tooling, Improving tooling and
(aleatory) from fleet level average manufacturing process, construction, applying

and flying environment quality control

release rate as a linear function of the mode mixity, which they
calculate from finite element analysis, that improves the accuracy
of estimate of Gc.

From Fig. 2, we note that without the mode-mixity model, Gc
would exhibit huge scatter, from 443 to 1047 N/m. The mode-mixity
model reduces the scatter because instead of a constant, Gc is now
predicted to vary from 513 to 875 N/m. That is, the simplicity of
the average Gc model causes error in that model to masquerade as
variability. For instance, the model of constant gravity acceleration
constant g will lead to a scatter when measured in different cities,
partially due to the difference in altitude. A model that takes altitude
into account will show less scatter around the computed value of g.
The uncertainty reduction, in turn, can be used to increase the safety
or the effectiveness of the structure.

III. Analysis of Error and Variability
A good review of different sources of uncertainty in engineer-

ing modeling and simulations is provided by Oberkampf et al.10,11

As in previous works,12,13 we simplify the classification as shown
in Table 1 to distinguish between uncertainties that apply equally
to the entire fleet of a structural component and uncertainties that
vary for an individual structure. In addition, this simple classifica-
tion makes it easy to analyze the effects of uncertainty control. The
uncertainties that affect the entire fleet are called errors here. They
reflect inaccurate modeling of physical phenomena, errors in struc-
tural analysis, errors in load calculations, or use of materials and
tooling in construction that are different from those specified by the
designer. The variability (aleatory uncertainty) reflects variability in
material properties, geometry, or loading between different copies
of the same structure.

For the sake of simplicity, we assume that with mode mixity there
are no remaining errors in the predicted value of Gc for a given mode-
mixity angle calculated from finite element analysis. Adding an
estimate of the remaining error can be easily accommodated by the
analysis to follow. However, we assume that the scatter of Gc around
mode-mixity-dependent Gc represents variability. The experimental
values given in Table 2 are the mean values of the fracture toughness
measured through five experiments by Grau et al.8 for each mode
mixity. We assume that the use of these mean values eliminates
most of the measurement variability and leaves out only the material
variability. In contrast, the scatter around the average Gc represents
a combined error and variability.

The deviations of experimentally measured fracture toughness
values from the two fits d A and dMM, the deviations from the constant
fit and from the linear fit (Fig. 2), given in Table 2 are calculated
from

d A = Gexp
c − G A

c , dMM = Gexp
c − GMM

c (4)

Each row of Table 2 corresponds to a different specimen. Each
specimen has a different core thickness, face-sheet thickness, and
crack length, thus, having a different mode-mixity angle (calculated
through finite element analysis). The sixth column of Table 2 lists
the deviations of Gc values obtained through experiments from their
average values. These deviations combine variability and error. Er-
rors are due to neglecting the effect of mode mixity in Gc. (We
assume that these are the only errors, so that dMM represents only
variability.)

The approximate cumulative distribution function (CDF) for the
variability is obtained by using ARENA software.14 The distribu-

Table 2 Deviations between measured and fitted values of average
Gc and Gc with mode mixity for different designs

ψ , Gexp
c , G A

c ,a GMM
c ,b d A ,c dMM,c

Specimen deg N/m N/m N/m N/m N/m

1 16.52 609.4 746.6 513.2 −137.1 96.2
2 17.53 443.1 746.6 552.2 −303.5 −109.1
3 18.05 577.9 746.6 572.3 −168.7 5.6
4 18.50 628.7 746.6 589.7 −117.9 39.0
5 22.39 565.7 746.6 739.5 −180.9 −173.8
6 23.89 711.0 746.6 797.1 −35.6 −86.1
7 24.50 863.4 746.6 820.6 116.8 42.8
8 24.89 956.2 746.6 835.9 209.6 120.3
9 23.48 679.5 746.6 781.4 −67.1 −101.9
10 24.98 707.5 746.6 839.3 −39.1 −131.7
11 25.55 767.1 746.6 861.1 20.5 −94.1
12 25.90 817.8 746.6 874.8 71.3 −56.9
13 22.65 702.3 746.6 749.3 −44.3 −47.1
14 23.69 903.7 746.6 789.5 157.1 114.1
15 24.15 964.9 746.6 807.2 218.4 157.7
16 24.54 1047.3 746.6 822.3 300.7 224.9
Std. dev. —— 162.2 0 115.6 162.2 113.8

aAverage fracture toughness.
bMode-mixity dependent fracture toughness.
cDeviation of experimental values from constant fit or from linear fit.

Fig. 3 Comparison of actual and fitted cumulative distribution func-
tions of variability, dMM, of Gc.

tion parameters and goodness-of-fit statistics for the distributions
are as follows. For variability dMM, ARENA found the best distri-
bution to be the normal distribution with a mean value of zero and
a standard deviation of 113.8. For obtaining goodness-of-fit statis-
tics, chi-square and Kolmogorov–Smirnov tests are the commonly
used. For our case, the number of data points is low; hence, the chi-
square test does not provide reliable statistics; therefore, ARENA
uses the Kolmogorov–Smirnov test to decide if a sample comes
from a population with a specific distribution. The p value of the
Kolmogorov–Smirnov test is greater than 0.15. For total uncertainty
d A, ARENA found the best distribution to be the normal distribu-
tion with a mean value of zero and a standard deviation of 162.2.
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Fig. 4 Comparison of actual and fitted cumulative distribution func-
tions of total uncertainty (error and variability, dA) of Gc.

The p value for the Kolmogorov–Smirnov test is again greater than
0.15. The corresponding p value is a measure for goodness of the fit.
Larger p values indicate better fits,14 with p values less than about
0.05 indicating poor fit.

Figures 3 and 4 show the comparison of the actual and fitted
CDFs of the variability (Fig. 3) and the total uncertainty (Fig. 4) of
the average fracture toughness, respectively. In Figs. 3 and 4, the
x axis represents the fitted CDF, whereas the y axis represents the
actual CDF. If the fits were exact, they would follow the linear lines
shown in Figs. 3 and 4. We see in Figs. 3 and 4 that the deviations
from the linear lines are not high; hence, the fitted distributions
are acceptable. Fitting is performed using ARENA software. The
Kolmogorov–Smirnov test p value is greater than 0.15.

In addition to variability in Gc predictions, there is also variability
in the pressure p. We assume that the maximum lifetime loading p
follows lognormal distribution with mean value of pallow and coef-
ficient of variation of 10%.

IV. Deterministic Design and B-Basis
Value Calculations

In deterministic design, the only use of probabilistic (or statisti-
cal) information is via conservative material properties, which are
determined by the statistical analysis of material tests. Federal Avi-
ation Administration (FAA) regulations (FAR-25.613) state that the
conservative material properties are characterized as A-basis and B-
basis material property values. A-basis values are used when there is
a single failure path in the structure, whereas the B-basis values are
used when there are multiple failure paths in the structure. Detailed
information on these values is provided in Chapter 8 of Ref. 15.

In this paper, we use B-basis Gc, which is defined as the value
exceeded by 90% of the population (of material batches) with 95%
confidence. This is given by

B basis = μ − σkB (5)

where μ is the mean, σ is the standard deviation, and kB is the
tolerance coefficient needed to achieve the 90% setoff and the
95% confidence. If infinitely many material characterization tests
were carried out, there would be no issue of confidence, and for
normal distribution, 90% of the population will be exceeded by
kB = z0.1 = �(0.1) = 1.282, where � is the CDF of the standard
normal distribution. With a finite sample of N tests, this is adjusted
as

kB = (
z0.1 +

√
z2

0.1 − ab
)/

a

a = 1 − z2
0.05

/
2(N − 1), b = z2

0.1 − z2
0.05

/
N (6)

Table 3 Mean and B-basis values of fracture toughness
of 13 designs analyzed

Mode mixity, (Gc)
A
mean, (Gc)

MM
mean, (Gc)

A
B-basis

,a (Gc)
MM
B-basis

,
Design deg N/m N/m N/m N/m

1 16.24 638.8 498.4 308.8 266.9
2 17.15 638.8 529.0 308.8 297.5
3 18.95 638.8 589.6 308.8 358.1
4 21.08 638.8 661.3 308.8 429.8
5 22.27 638.8 701.3 308.8 469.8
6 18.32 638.8 568.4 308.8 336.9
7 20.18 638.8 630.9 308.8 399.4
8 22.27 638.8 701.4 308.8 469.9
9 23.41 638.8 739.7 308.8 508.2
10 18.28 638.8 567.1 308.8 335.6
11 19.86 638.8 620.2 308.8 388.7
13 21.57 638.8 708.6 308.8 477.1

a B-basis values are calculated assuming that the improvements in accuracy affect the
B-basis values.

Fig. 5 Fitted least-square lines for fracture toughness and derived
B-basis allowables.

where z0.1 = �(0.1) is the critical value of normal distribution that
is exceeded with a probability of 10%.

Grau et al.8 used the fracture toughness values obtained from
experiments to calculate the predicted failure load of a debonded
sandwich structure shown earlier in Fig. 2. They used different core
thickness, face-sheet thickness, and crack length combinations and
compared the predicted failure load of the structures designed via the
use of average Gc and mode-mixity-dependent Gc. In their failure
load calculation, Grau et al.8 used the mean values for the fracture
toughness, and they did not use a safety factor.

In this paper, we use B-basis values for fracture toughness and a
safety factor of 1.4 for loading to assess the allowable flight load of
the same sandwich designs used by Grau et al.8 To calculate B-basis
values, we use the standard deviations for fracture toughness given
in Table 2. The mean values and the corresponding B-basis values
of the fracture toughness for the 13 designs given in the example in
Ref. 8 are given in Table 3.

Even though the scatter around the average Gc is combination of
error and variability, for deterministic design following FAA reg-
ulations it is treated as variability. The reduced standard deviation
of the mode-mixity-dependent Gc then allows increasing the allow-
able B basis. Figure 5 shows the fitted and B-basis values of the two
approaches.

While calculating the B-basis values for fracture toughness given
in Table 3, we use N = 16, which increases kB to 2.035. Re-
call that the standard deviations σ of designs are obtained in
the preceding section. For example, for the first design the mean
value is 638.8. The corresponding B-basis value is calculated as
638.8 − 2.035 × 162.2 = 308.8.

After obtaining the B-basis values in Table 3, we compute the
allowable flight load pallow by deterministic design philosophy. As
noted earlier, in addition to the use of B-basis material properties, a
safety factor of 1.4 is also used for loads. Hence, Eq. (3) is modified
to calculate the allowable flight loads for 13 different designs as

pallow = (1/1.4)
√

(Gc)B-basis/G0 (7)
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Table 4 Allowable flight load of failure of sandwich panels
designed using deterministic approach

Allowable flight load

Design (pallow)A ,a kPa (pallow)MM,b kPa %�p

1 51.2 47.6 −7.0
2 267.0 262.0 −1.9
3 158.6 170.8 7.7
4 77.1 90.9 18.0
5 45.2 55.8 22.3
6 247.2 258.2 4.4
7 154.1 175.3 13.7
8 73.1 90.2 23.4
9 42.8 54.8 28.3
10 247.2 257.7 4.2
11 146.2 164.1 12.2
12 70.1 84.3 20.2
13 40.8 50.7 24.3
Average 13.1

aUse of average fracture toughness of experiments.
bUse of mode-mixity-dependent fracture toughness.

The calculated pallow values corresponding to the use of G A
c and

GMM
c are given in Table 4. The last column of Table 4 shows the

percent change in the allowable flight load by using GMM
c instead

of G A
c . We see that allowable flight load is increased by 13.1% on

average by using the mode-mixity-based B-basis properties. This
is the improvement in allowable flight load using a deterministic
approach. As shown in the next section, this increase in allowable
flight load is accompanied by a reduction in probability of failure,
so that the additional gains may be realized by using a probabilistic
approach.

V. Assessment of Probability of Failure
The probability of failure of a structural component can be ex-

pressed in terms of its structural response R and its capacity C
corresponding to that response by

Pf = Prob (C ≤ R) (8)

For the sandwich structure analyzed here, the response R = G
is the energy release rate [Eq. (2)], and the capacity C = Gc is the
interfacial fracture toughness. G depends on structural dimensions
through G0 [Eq. (2)]. Both response G and the capacity Gc have
variability that needs to be included in the calculation of the proba-
bility of failure. We assume that the variability in G is mainly due
to the variability in load p rather than G0. Besides variability, there
exist errors in assessing G and Gc, for example, errors in load G0

and material property calculations.
The general equation for probability of failure given in Eq. (8)

can be expressed in this problem as

Pf = Prob
(
Gc ≤ G0 p2

)
(9)

Then, the probability of failure can be written in functional form
as

Pf = Pf

(
Ḡc, eGc , VARGc , pallow, VARP , G0

)
(10)

where Ḡc is the mean value of Gc, eGc is the error in Gc predic-
tions that we reduce by using mode-mixity-dependent Gc instead of
average Gc, VARGc is the variability in Gc, pallow is the allowable
flight load (or mean value of the loading p), VARP is the variability
in p, and G0 is the strain energy release rate corresponding to unit
pressure that we assume to be deterministic. Because the limit-state
function for this problem, g = Gc − G0 p2, is a simple function with
only two random variables, we easily calculate the probability of
failure by analytical means as follows.

The probability distribution function (PDF) of a function Z of
two random variables X and Y , Z = h(X, Y ), can be calculated as

(Ang and Tang,16 p. 170)

fZ (z) =
∫ ∞

−∞
fX,Y (x, y)

∣∣∣∣∂x
∂z

∣∣∣∣ dy (11)

where fX,Y (x, y) is the joint PDF of x and y. We can write the
limit-state function for the sandwich panel problem as

g = Gc − G0 p2 (12)

Therefore, to calculate the PDF of g from Eq. (11), we replace Z
with g, X with Gc, and Y with p. We also have Gc = g + G0 p2, so
that |∂x/∂z| = |∂Gc/∂g| = 1. After these substitutions and noting
that p only takes positive values, we get from Eq. (11)

fG(g) =
∫ ∞

0

fGc ,p

(
g + G0 p2, p

)
dp (13)

Here we assume that GC and p are statistically independent; hence,
the joint distribution in Eq. (13) is calculated as

fGc ,p(g + G0 p2, p) = fGc

(
g + G0 p2

)
f p(p) (14)

Then, the CDF of g is calculated as

FG(g′) =
∫ g

−∞
fG(g′) dg′ (15)

which allows us to compute the probability of failure simply as
Pf = FG(0).

Table 5 shows the probabilities of failure corresponding to de-
terministic allowable flight loads. We observe that in addition to
the 13.1% average increase in allowable flight load, the average
probability of failure was reduced by about a factor of five.

Notice that the probabilities of failure given in Table 5 are high.
These probabilities of failure correspond to component failure prob-
abilities. The probability of the actual structure will be much smaller
due to the redundancy in the structure. For example, if we define the
failure of the structure as simultaneous failures of two components
having a correlation coefficient (of probability of failure) of 0.5, then
component probabilities of failure 1.869 × 10−3 and 0.369 × 10−3

given in the last row of Table 5 correspond to system probabilities
of failure 1.280 × 10−4 and 0.139 × 10−4, respectively.

Table 5 Corresponding probabilities of failure of
sandwich panels designed using deterministic approacha

Probability of failure

Designs P Ab

f (10−3) PMMc

f (10−3)

1 1.869 1.064
2 1.869 0.762
3 1.869 0.407
4 1.869 0.211
5 1.869 0.153
6 1.869 0.504
7 1.869 0.275
8 1.869 0.153
9 1.869 0.117
10 1.869 0.511
11 1.869 0.304
12 1.869 0.184
13 1.869 0.145
Average 1.869 0.369

a B-basis values are calculated considering that the improvements in
accuracy affect the B-basis values (adjusted B-basis values).
bUse of average fracture toughness of experiments.
cUse of mode-mixity-dependent fracture toughness.
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Table 6 Allowable flight loads of sandwich panels
calculated via probabilistic approach

Pf = 1.869 × 10−3

Design (pallow)A ,a kPa (pallow)MM,b kPa %�p

1 51.2 50.5 −1.3
2 266.9 283.9 6.4
3 158.6 190.1 19.9
4 77.1 102.6 33.1
5 45.2 63.2 39.8
6 247.3 285.2 15.3
7 154.2 196.9 27.7
8 73.1 102.3 39.9
9 42.8 62.4 45.8
10 247.3 284.4 15.0
11 146.2 184.0 25.8
12 70.1 95.4 36.1
13 40.8 57.6 41.1
Average 26.5

aUse of average fracture toughness of experiments.
bUse of mode-mixity-dependent fracture toughness.

VI. Effects of Improved Model on Allowable Flight
Load via Probabilistic Design

As seen from Eq. (10), there are four distinct ways to increase
the allowable flight load of a structure: 1) Use a different material
to increase Ḡc. 2) Develop more accurate solutions that reduce eGc

(such as the use of mode-mixity-dependent Gc instead of average
Gc). 3) Improve quality control and manufacturing processes to
reduce variability VARGc or employ measures to reduce VARP .
4) Use a heavier design to reduce G0. For a structure that is already
built, only option 2 is available.

The preceding section showed how reductions in variability can
increase allowable flight load using deterministic design. For prob-
abilistic design, the mode-mixity approach is treated as an accuracy
improvement, and we calculate its effect on the safe allowable flight
load.

For a target probability of failure (Pf )target, the allowable flight
load can be calculated from

Pf = Pf

(
Ḡc, eGc , VARGc , pallow, VARP , G0

) = (Pf )target (16)

Thus, given the target probability of failure, the allowable flight
loads corresponding to different error factors on fracture toughness
eGc can be calculated from Eq. (17),

Pf

(
eGc1

, pallow1

) = Pf

(
eGc2

, pallow2

) = (Pf )target (17)

For the present calculation, the target probability of failure is
taken to be 1.869 × 10−3, which is the probability of failure with
the deterministic allowable flight load using the average Gc. (See
Table 5.) Table 6 shows the comparison of allowable flight load for
the average Gc and mode-mixity-dependent Gc approaches in the
case of probabilistic design. We see in Table 6 that by fixing the
probability of failure rather than adjusting the B-basis properties,
the average allowable flight load can be increased by 26.5%. Note,
however, that for some structures the improved analysis may indicate
a small reduction in allowable flight loads. With the deterministic
approach, this is applied to designs 1 and 2 (Table 4), whereas
with the probabilistic approach, only design 1 suffers a small load
reduction.

VII. Conclusions
The effect of an improved model for fracture toughness on allow-

able flight load was investigated using both deterministic and prob-
abilistic design methodologies. For deterministic allowable flight
load calculation, the improved model reduces scatter and allows an

increase in the fracture toughness allowable calculated by B-basis
properties, whereas for probabilistic allowable flight load calcula-
tion, the reduced error is incorporated into the calculation of prob-
ability of failure. We find that the deterministic approach leads to
a 13.1% increase on average in the allowable flight load and re-
duction of the probability of failure by a factor of five. The use
of B-basis properties in the deterministic design does not permit
translating the full potential of improved modeling to increase al-
lowable flight loads. In contrast, the probabilistic approach allows
a 26.5% increase on average in the allowable flight load, while still
maintaining the original probability of failure.
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