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This paper presents a methodology to predict microcracking andmicrocrack density in both surface and internal

plies of a symmetric cross-ply laminate under biaxial mechanical and thermal loading conditions. The thermoelastic

properties of the microcracked laminates at different crack densities were determined by finite element analysis of

the unit cells bounded by the microcracks. Analytical expressions for the stiffness and coefficients of thermal

expansion as functions of crack densities were obtained in the form of response surface approximations. These

analytical expressions were then used to predict the formation of a new set of microcracks by equating the change in

strain energy in the unit cell before and after the formation of themicrocracks to the critical fracture energy required

for their formation. Analytical expressions obtained as response surface approximations were also used to predict

progressive microcracking. Both displacement and load control cases were considered along with thermal loading.

Results from the current methodology agree very well with published data.

Nomenclature

�A� = 2 � 2 laminate stiffness matrix
�A1�, �A2� = 2 � 2 laminate stiffness matrix before and after

formation of the next microcracks
� �A� = inverse of the 2 � 2 laminate stiffness matrix
� �A1�, � �A2� = inverses of the 2 � 2 laminate stiffness matrix

before and after formation of the next
microcracks

Gm = strain energy release rate for the formation of
next microcrack

Gmc = microcracking fracture toughness
Nels = number of elements in the FE model
NL = number of layers in the laminate
Nx, Ny = applied laminate stress resultants in x and

y directions
fNg = 2 � 1 force resultant vector
fNtg = 2 � 1 thermal force vector
b �Q�k�c = 2 � 2 stiffness matrix of the kth ply in the

laminate
t = thickness of the laminate
tk = thickness of kth ply in the laminate
t0, t90 = thickness of the 0 and 90 deg plies
t1, t2 = thicknesses of 0 and 90 deg layers in the cross-

ply laminate
U = strain energy of the whole unit cell
U�k�

0 = strain energy density in the kth ply

Vi, V = volume of the ith element and volume of the
whole unit cell

� = ratio of applied stress resultants (Ny=Nx)
f�crg = 2 � 1 coefficients of thermal expansion (CTE)

vector of the microcracked ply
f�0g, f�90g = 2 � 1 CTE vector of the 0 and 90 deg plies
f��k�g = 2 � 1 CTE vector of kth ply
� = ratio of applied laminate strains ("y="x)
�T = temperature change
f"g = 2 � 1 laminate strain vector
"x, "y = applied laminate strains in the x and y directions
�, �x, �y = uniaxial microcrack density, and microcrack

densities in x and y directions
�i
x, �

i
y = stresses in the x–y coordinate system in the ith

element

I. Introduction

M ATRIX microcracking is the first form of damage in
composite laminates that are subjected to mechanical and/or

hygrothermal loading. The immediate effect of microcracking is the
deterioration of the thermomechanical properties of the laminate.
Furthermore, it could lead to delamination and catastrophic damage
of the structure. In some instances, cryogenic fuel tanks,
microcracks, and delaminations make the laminates permeable to
fluid flow. However, microcracking is not always an undesirable
phenomenon. Microcracked textile composites are being studied for
their use in future technologies such as transpiration cooling of
rocket engine walls and turbine blades.

Matrix microcracks are present in structural composites during a
major part of their life. Given the importance of structural composites
in the aerospace industry today, there is a need to completely
understand the microcracking phenomenon. Over the years
researchers have put forward various methods to 1) determine the
thermomechanical properties of microcracked laminates, and
2) predict the microcrack density as a function of applied stress. The
majority of these studies were conducted on symmetric cross-ply
laminates. In these laminates it has been observed that the cracks
form in the internal as well as surface plies and span over the entire
cross section of the plies. It is in general agreed that in cross-ply
laminates the microcracks form and traverse the entire cross section
of the ply instantaneously on an experimental time scale [1–3].
Comparatively, fewer studies have been carried out to study
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microcracking in angle-ply laminates such as quasi-isotropic
laminates ([4–6], not a complete list). In these laminates, it has been
observed that the cracks do not traverse the whole ply cross section
instantaneously. Thus, slow stable crack growth has to be
considered. This paper, however, concentrates on microcracking in
symmetric cross-ply laminates only with instantaneous unstable
crack growth.

Figure 1 illustrates the formation of the next microcrack in the
internal 90 deg plies of a unit cell of damage bounded by two
preexisting microcracks. The laminate is designated as ��S�=90n�s
laminate, where (S) denotes a set of supporting plies which could be
0 deg or any set of off-axis plies. In the case of �90n=�S��s laminates,
microcracks form in the surface plies. The unit cell of damage is
shown in Fig. 2a. The cracks in one outer ply are staggered with
respect to the other ply [3]. The next stage of cracking is shown in
Fig. 2b where a single unit cell breaks up into three unit cells of
damage by the formation of four new microcracks. Crack density
increases by a factor of 3 to preserve the staggered pattern of
microcracks. It should be noted that a unit-cell analysis implies the
assumption that the distribution of cracks along the length of the
laminate is uniform.Nonuniform crack spacing has also been studied
by researchers.McCartney [7] proposed some simple additions to the
analytical formulas for uniform crack spacing. Silberschmidt [8]
concluded that, although the unit-cell analyses might lead to
incorrect results, they provide useful lower and upper bounds for the
minimum and maximum crack spacing in the case of nonuniform
crack spacing. In the current research work, the unit-cell approach is
adopted in keeping with the general trend of research in the field of
microcracking.

Nairn [3] used a finite fracture mechanics approach to predict the
formation of microcracks in the 90 deg plies. In this approach, the
strain energy release rate for the formation of a newmicrocrack,Gm,
is calculated as a function of applied stresses, mechanical properties
of the composite and the microcracked laminate, and the microcrack
density. This Gm is then equated to the “microcracking fracture
toughness,”Gmc, in order to solve for the stresses required to form the
new microcracks.Gmc has been shown to be a material property and
experimental techniques are available to determine the Gmc of a
composite [3]. The strain energy release rate was shown to be
different for displacement control and load control conditions. This
finite fracture mechanics method predicted the progressive
microcracking very well. The predictions are limited to uniaxial
loading and microcrack formation in the internal or surface plies but
not in both at the same time. The methodology presented in the
current manuscript is, in a sense, an extension of Nairn’s approach to
include biaxial loading conditions which takes into account the
formation of microcracks in both surface and internal plies at the
same time.

McCartney [9,10] developed a generalized plane strain analytical
model to predict progressive microcracking by equating the
difference in strain energy before and after the formation of the
microcracks to the fracture energy required to form a unit area of

microcrack. This analysis considered cracking only in the internal
90 deg plies of a general symmetric laminate and not the surface
plies. This model took into account triaxial loading conditions and
thermal residual stresses. A statistical distribution of fracture
energies in the laminate was used. Statistical models [10–14] for
distribution of strength or fracture energies are closer to reality as
they take into account imperfections like the variation of fiber
distribution in the 90 deg layers and the inherent flaws in the
composite materials. Nairn [3] suggested using a stochastic variation
of microcracking fracture toughness, Gmc, to account for the
imperfections.

Early progressive microcracking models used transverse strength
of a composite as a criterion for the formation of new microcracks
[12,15–17]. Nairn [3], however, argues against these strength-based
models because the behavior of a ply as part of a laminate is
dependent on the laminate stacking sequence and is different from
the conditions for transverse-strength tests. It has also been shown
that the transverse-strength based model predictions for progressive
microcracking are not consistent with experimental observations.

To predict progressive microcracking, it is essential to have an
accurate model to determine the thermomechanical properties of the
microcracked laminate. Shear lag methods [17–20] are the most
popular analytical techniques to predict the properties. Variational
methods introduced by Hashin [21] and extended by Nairn [22,23]
have also been shown to be good when compared with the
experimental data. Average crack opening displacement (COD) has
been used by some researchers as a parameter to express modulus
and energy release rate [24–27]. Finite element (FE) analysis has
been used to predict the thermomechanical properties of
microcracked laminates [20,28]. Berthelot [29] compares the finite
element analysiswith other analytical techniques to show that a shear
lag model which uses a parabolic distribution of stresses in the
thickness direction of the plies gives results that agreewell with those
obtained from FE analysis.

Analytical methods can be applied for microcracking in one
direction. If the microcracks form in both directions, the problem
would become too complicated to be treated by analytical methods.
Aboudi et al. [30] present the only available analytical model that
takes into account microcracking in both directions in cross-ply
laminates. They present an approximate 3-D analysis to determine
the stiffness and Poisson’s ratio of a microcracked cross-ply
laminate.

In the current research, FE analysis has been used to obtain the
average thermoelastic properties of the laminate with microcracks in
both directions. The key feature of this work was to obtain analytical
expressions for stiffness and coefficients of thermal expansion (CTE)
components, as functions of crack densities, using response surface
approximations. This facilitates analytical differentiation of strain
energy with respect to crack densities. Microcracking fracture
toughness Gmc was used for the critical fracture energy release rate.

Fig. 1 a) Unit cell of damage for internal microcracks in an ��S�=90n�s
laminate; b) formation of next microcrack in the internal 90 deg ply. � is

the microcrack density.

Fig. 2 a) Unit cell of damage for cracks in 90 deg on the surface;

b) formation of next microcracks, which break up the unit cell into three
new unit cells. � is the microcrack density.
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Progressive microcracking was predicted using these analytical
expressions and the critical energy release rate. Both mechanical and
thermal loading were considered.

II. Methodology to Predict Microcracking due to
Biaxial Loading Conditions

The current research proposes a method to predict the microcrack
density in both surface and internal plies, henceforth termed as
“bidirectional microcracking,” in symmetric cross-ply laminates
subjected to biaxial mechanical and thermal loading. The composite
is loaded in its principal material axis by uniform in-plane loads Nx

and Ny (but without shear loads). Thermal loads combined with
mechanical loads are discussed in Sec. VI. The method is similar to
thefinite fracturemechanics technique used byNairn [3] inwhich the
difference in the strain energy of a unit cell before and after the
formation of the next microcrack is equated to the total energy
required to form this microcrack. The unit cell for bidirectional
microcracking, shown in Fig. 3 for a �90n=0m�s laminate, is a
“combination” of the two unit cells shown in Figs. 1 and 2. The
definition of crack densities is accordingly modified and denoted by
�x and �y, as shown in Fig. 3.

For load control conditions, the difference in strain energy before
and after the formation of the next microcrack is given by

Gm � 1

2
bNx Ny c � �� �A2� � � �A1�� � fNx

Ny
g � 1

�x

� 1
�y

(1)

where Gm is the strain energy release rate, Nx and Ny are the force
resultants in the x and y directions, and �x and �y are the microcrack
densities in the x and y directions. Equation (1) can be written as

Gm � 1

2
bNx Ny c � �� �A� � fNx

Ny
g � 1

�x

� 1
�y

(2)

where �� �A� � � �A2� � � �A1�. In practical situations, the force resultants
(Nx and Ny) are proportional to one another. For example, in a
cylindrical pressure vessel the hoop stressNy is twice the axial stress
Nx. In the case of thermal stresses, the relation betweenNx andNy is
dependent on the CTEs of the laminate in the x and y directions. In
general, the proportional loading relationship can be written as

Ny � � � Nx (3)

where � is a nondimensional constant. The expression in Eq. (2) can
then be simplified as

Gm � 1

2
��A11 	 2��A12 	 �2�A22� � N2

x �
1

lx
� 1

ly
(4)

where � �A11 � �A211
� �A111

, � �A12 � �A212
� �A112

, and

� �A22 � �A211
� �A111

.
The formation of the new microcracks can happen in three

different ways:
Case I: formation of microcracks in the surface plies (the crack

density in the x direction becomes 3�x and the crack density in the
y direction remains �y);

Case II: formation of microcracks in the internal ply (the crack
density in the x direction remains �x and the crack density in the
y direction becomes 2�y); and

Case III: formation of microcracks in both surface and internal
plies (the crack density in the x direction becomes 3�x and the crack
density in the y direction becomes 2�y).

In case I, four newmicrocracks are formed in the surface plies and
the total energy �U required for this is

�U� 4Gmc

1

�y

t1 (5)

where Gmc is the microcracking fracture toughness [3], and t1 is the
thickness of the surface plies (90 deg plies). For case II, only one
microcrack forms in the internal ply of the unit cell and the energy
required for this is

�U�Gmc

1

�x

t2 (6)

where t2 is the thickness of the internal plies (0 deg plies). For
case III, the energy required is the sum of Eqs. (5) and (6),

�U� 4Gmc

1

�y

t1 	Gmc

1

�x

t2 (7)

Equating Eqs. (5–7) to Eq. (4), we can solve for Nx for different
cases I–III to obtain

Nx�I� �
��������������������������������������������������������������������������

8Gmct1

�� �A11 	 2� �� �A12 	 �2 �� �A22� � 1
�x

s
�CASE I�

(8)

Nx�II� �
��������������������������������������������������������������������������

2Gmct2

�� �A11 	 2� �� �A12 	 �2 �� �A22� � 1
�y

s
�CASE II�

(9)

Nx�III� �
�����������������������������������������������������������������������������

2��Gmc
1
�x
t2�	 �4Gmc

1
�y
t1��

�� �A11 	 2� �� �A12 	�2 �� �A22� � 1
�x
� 1
�y

vuut �CASE III�

(10)

The least among Nx�I�, Nx�II�, and Nx�III� will be the case that will
happen. For example, if Nx�I� is the least among the three, then
continued loading would cause the new microcracks to form in the
surface plies (x direction).

The method described above can be extended to displacement
control conditions by replacing the force resultants (Nx andNy) with

strains ("x and "y) and the � �A� matrix with �A�. The equations for
displacement control can be derived as

"x�I� �
��������������������������������������������������������������������������

8Gmct1
��A11 	 2� ��A12 	 �2 ��A22� � 1

�x

s
�CASE I�

(11)

x

y

1/λx

1/
λ y

90º
0º

90º

t1
t2

Fig. 3 Unit cell with cracks in both 0 deg (xdirection) and90degplies of

a �90n=0m�s laminate. The hatched regions are the cracks’ surfaces. The
black dots are fiber tips visible on the surfaces. The crack density in the

x direction is �x and in the y direction is �y.
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"x�II� �
��������������������������������������������������������������������������

2Gmct2
��A11 	 2� ��A12 	 �2 ��A22� � 1

�y

s
�CASE II�

(12)

"x�III� �
�����������������������������������������������������������������������������

2��Gmc
1
�x
t2�	 �4Gmc

1
�y
t1��

��A11 	 2� ��A12 	�2 ��A22� � 1
�x
� 1
�y

vuut �CASE III�

(13)

where �A11 � A111
� A211

, �A12 � A112
� A212

, �A22 � A122
�

A222
, and � is a nondimensional constant relating the strains in the

x and y directions:

"y � � � "x (14)

III. Finite Element Method to Determine the Laminate
Stiffness Matrix

The laminate stiffness matrix �A� of a bidirectionallymicrocracked
laminate was obtained by carrying out a finite element analysis of the
unit cell of damage (Fig. 3). Analysis was performed on one-quarter
of the unit cell, Fig. 4, by taking advantage of the symmetry. An eight
node brick element (C3D8R, ABAQUSTM) was used for modeling.
The number of nodes and elements varied with the dimensions of the
unit cell. Typically 20,000 nodes with 20,000 elements were used.

The components of the first column of the �A�matrix, A11 and A21,
were obtained by imposing a unit strain in the x direction ("x � 1)
and zero strain in the y direction ("y � 0) and calculating the resulting
stress resultants,Nx andNy. Unit strain in the x direction was applied
by imposing a displacement of 1=2�x on the unhatched surfaces with
normals in the positive x direction, and zero displacement in the
x direction on the unhatched surfaces with normals in the negative
x direction (refer to Fig. 4). Zero strain in the y direction was applied
by imposing a zero displacement in the y direction on the unhatched
surfaces with normals in both positive and negative y directions
(Fig. 4). The elemental stresses from the FE analyses were volume
averaged andmultiplied by the laminate thickness to obtain the stress

resultants:

Nx �
PNels

i �i
xV

i

V
� t (15)

Ny �
PNels

i �i
yV

i

V
� t (16)

Because "x � 1 and "y � 0, we have A11 � Nx and A21 � Ny from
the following equation:

fNx

Ny
g � A11 A12

A12 A22

� �
� f "x

"y
g (17)

A similar analysis can be carried out by imposing a unit strain in
the y direction and a zero strain in the x direction to obtain A12 and
A22. A typical deformation of a unit cell with a unit strain imposed in
the y direction is shown in Fig. 5.

IV. Comparison of Current Methodology with Finite
Fracture Mechanics Approach

The finite fracture mechanics technique used by Nairn [3] predicts
the experimental results of progressive microcracking very well.
Variational methods were used to derive the energy release rates for

x

y

1/
(2

λλ y
)

1/(2λλx)

Fig. 4 One-quarter of the unit cell was used in the FE model. The

hatched regions are the cracks’ surfaces.

Fig. 5 Typical deformation of a unit cell (�x � 6:3 cracks=cm and
�y � 6:3 cracks=cm) due to "y � 1 and "x � 0. (Deformation not to

scale.)

Table 1 Orthotropic material properties for the unidirectional lamina
used in the FE model

Property Value

E1 169 GPa (24.5 Msi)
E2, E3 8.62 Gpa (1.25 Msi)
�12, �13 0.355
�23 0.410
G12, G13 5.0 Gpa (0.73 Msi)
G23 1.22 Gpa (0.177 Msi)

Table 2 Comparison of the current model results with Nairn’s model. The stresses (�) are values at which the
next microcacks form in the laminate. Directions of the x and y axes can be viewed in Fig. 3

Surface cracks (�x � 1:18 cracks=cm and �y � 0:0 cracks=cm)

Loading condition �x, MPa, [3] �x, MPa, current model Difference %
Load control 416 421 1.3
Displacement control 427 428 0.2

Internal cracks (�x � 0:0 cracks=cm and �y � 1:58 cracks=cm)

Loading condition �y, MPa, [3] �y, MPa, current model Difference %
Load control 1203 1240 3.1
Displacement control 1200 1244 3.7
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load and displacement control cases. In this section, themethodology
presented in Sec. II is compared with Nairn’s model.

A �902=0�s laminate (0 deg in the x direction) with a ply thickness
of 0.165 mm (0.0065 in.) was used for this purpose. The orthotropic
ply properties used in the FE simulations are listed in Table 1. A
microcracking fracture toughness (Gmc) value, typical of polymer
composites, of 250 J=m2 was used. Also, only mechanically applied
stresses were considered.

Results are presented in Table 2. It should be noted that Nairn’s
formulas are for uniaxial microcracking only. Uniaxial micro-
cracking is a particular case of the more general bidirectional
microcracking. Therefore the comparison in Table 2 is between
Nairn’s method and the present bidirectional microcracking method
applied for the special cases of uniaxial loading. Table 2 shows
excellent agreement between the two methods and hence it can be
concluded that the method presented in Sec. II is comparable to
Nairn’s model.

V. Progressive Bidirectional Microcracking

The crucial part in themethodology presented is the determination
of laminate stiffness matrix �A� for a bidirectionally microcracked
laminate with arbitrary (but uniform) crack densities. With the FE
simulations �A� can be determined for a particular set of microcrack
densities (�x and �y). If an arbitrary set of �x and �y were chosen, one
can follow the procedure shown in Sec. II to predict the loads for the
formation of the next microcracks. Following this, the �A�matrix for
the new set of �x and �y can be determined and proceed further till
sufficiently high crack density is reached. Now, if a different set of
crack densities were to be chosen to begin with, then the whole
process of determining the �A� matrices for each new set has to be
repeated. This is a laborious and expensive process. This is a
situation wherein analytical methods to determine �A� can be very
useful. However, to mitigate the tedium associated with the FE
simulations as well as to take advantage of analytical methods, a
novel procedure was conceived for this research.

The crack densities over a given range were considered for the
purpose of simulations: �x in the range of 0 to 12:6 cracks=cm
(0–32 cracks=in:) and �y in the range of 0–9:5 cracks=cm
(0–24 cracks=in:). The stiffness matrices �A� for certain crack
densities in this range were determined with the FE simulations.
Using this data, a complete cubic polynomial in two variables,�x and
�y, was fitted by a least squares approximation method for each
component of the �A�matrix. Figures 6a–6c show, respectively, A11,
A12, and A22 as functions of �x and �y for the �902=0�s laminate
discussed in Sec. IV. A21 is equal to A12 for this symmetric cross-ply
laminate. The surfaces in the plots are the cubic polynomial response
surface approximations (in �x and �y). The 56 black dots in each plot
are components of the stiffness matrices obtained from FE
simulations. In this way analytical expressions were obtained for the
components of �A� as a function of the crack densities.

The expressions for A11, A12, and A22 and Eqs. (8–10) for load
control were used as input to a MATLAB program. The MATLAB
program requires an input of initial crack densities, �x and �y. It then
calculatesNx�I�,Nx�II�, andNx�III� [using Eqs. (8–10)] and determines
the least among the three values. Thus the formation of the next
microcrack is determined. The crack densities are updated
accordingly, and the new laminate stiffness matrices are obtained
by using the analytical expressions for A11, A12, and A22. This
procedure for progressive bidirectional microcracking is repeated
until one of the crack densities exceeds the upper bound
(12:6 cracks=cm for �x and 9:5 cracks=cm for �y). Progressive
microcracking depends on the initial crack densities. Different initial
crack densities were input to the program and the progressive
microcracking was plotted as a function of applied stress as shown in
Fig. 7a. The value of � [Eq. (3)] was chosen as 2.0 to simulate the
stresses in a thin shell cylindrical pressure vessel with the x axis in the
axial direction and the y axis in the circumferential direction. For
example, consider the case of densities �x � 0:14 cracks=cm
(curve 5 shown as a “dashed x” line) and �y � 0:14 cracks=cm
(curve 6 shown as a “dashed +” line). Initially the cracks start to form

in the x direction and �x increases to 3:72 cracks=cm, while �y

remains constant. After this, the stress required for the formation of
microcracks in the x direction is higher than that for microcracking in
the y direction. Therefore, �y starts to increase while �x remains
constant. The information from Fig. 7a, for different initial crack
densities, was used to obtain the progressive bidirectional
microcracking as a function of applied stress (resultants), as shown
in Fig. 7b. The figure shows that the microcracking in the surface
plies begins at a lower stress than for the internal plies for this

Fig. 6 Complete cubic polynomial fit using least squares approx-

imation over 56 data points (black dots) obtained from FE simulations.

a) A11, b) A12, and c) A22.
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particular case of biaxial loading. The curve for �y has a negative
slope in the beginning, which means that these high-density
microcracks will appear instantaneously when the load reaches a
critical value. It should be pointed out that a similar negative slope
can be observed for microcracking in surface plies of this type of
laminate in [3].

VI. Effect of Thermal Stresses

In cross-ply polymer composite laminates, thermal stresses can be
significant enough to cause microcracking. Advanced composites
are processed at temperatures in the range of 180
C (355
F), and
when cooled down to room temperature, the resulting thermal
stresses could produce microcracking in both surface and internal
plies. Thus a laminate could have microcracks even before it is
subjected to mechanical loads. Laminates subjected to cryogenic
conditions and cyclic thermal loading exhibit significant micro-
cracking even before they are mechanically loaded [31–34].

In the Appendix, the strain energy in a unit cell for load control
conditions in the presence of thermal stresses is derived as

U�
�
1

2
fNgT � �A�fNg � 1

2
fNtgT � �A�fNtg

	
XNL

k�1

1

2
f��k�gT � �Q�k��f��k�g ��T2tk

�
� 1
�x

� 1
�y

(18)

and for displacement control conditions as

U�
�
1

2
f"gT �A�f"g � f"gTfNtg

	
XNL

k�1

1

2
f��k�gT � �Q�k��f��k�g ��T2tk

�
� 1
�x

� 1
�y

(19)

where fNg and f"g are the 2 � 1 vectors of applied stress resultants

and strains, respectively, � �Q�k�� is the 2 � 2 stiffness matrix of the kth
layer, f��k�g is the 2 � 1 vector of CTEs of the kth layer, tk is the
thickness of the kth layer, �T is the temperature difference with
respect to the stress free temperature, and fNtg is the 2 � 1 thermal
force vector [defined in the Appendix, Eq. (A4) and reproduced
here],

fNtg �
XNL

k�1

� �Q�k��f��k�g � tk�T (20)

By normalizing the thermal force in Eq. (20) with�T we obtained
a new quantity, fN0

tg, which is a laminate property.

fN0
tg �

XNL

k�1

� �Q�k��f��k�g � tk (21)

Similarly we can define a new quantity U0, by dividing the last
term in the parentheses in Eqs. (18) and (19) with �T2:
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Fig. 7 a) Progressive bidirectionalmicrocracking for different initial crack densities. In the legend, “l-x” and “l-y” stand for�x and�y and the numbers

in the legend are initial crack densities. b) Crack densities as a function of applied stress (resultant). For both plots,Ny=Nx � 2:0. All the points in a) were
combined to obtain plot b).

2954 BAPANAPALLI, SANKAR, AND PRIMAS



U0 �
XNL

k�1

1

2
f��k�gT � �Q�k��f��k�g � tk (22)

Though both fN0
tg andU0 appear to be laminate properties, they are

functions of the crack densities. Both quantities can be obtained as
functions of �x and �y using the FE analysis. A unit cell is subjected
to boundary conditions for zero strains ("x � 0 and "y � 0) as
described in Sec. III. It is then subjected to a temperature change�T.
Volume averaged stress resultants fNg can then be obtained using
Eqs. (15) and (16) which is equal to �fNtg [substitute "� 0 in
Eq. (20)]. Dividing fNtg with the imposed temperature load, �T,
gives fN0

tg for that particular combination of �x and �y. Response
surfaces approximations for the two components of fN0

tg can be
obtained as shown in Figs. 8a and 8b. Analytical expressions can be
obtained using least squares polynomial fitting as described in Sec. V
(for components of the �A� matrix).

The FE analysis to obtain fN0
tg can be used to calculateU0 as well.

When zero strains, f"g � 0, are imposed on the unit cell in the FE
analysis, the first two terms in the parentheses in Eqs. (18) and (19)
vanish. Thus, the third term gives the areal strain energy density
(strain energy per unit area) of the laminate. From the finite element
analysis, the total strain energy of the unit cell can be obtained. This
quantity when divided by the volume of the unit cell and �T2 and
multiplied by laminate thickness gives U0 for that particular
combination of�x and�y. A response surface approximation forU0 is
shown in Fig. 8c. An analytical expression was obtained by the least
squares approximation.

The analytical expressions for components of �A� and fN0
tg, andU0

can be used in Eqs. (18) and (19) to obtain the strain energy for a
given temperature change �T and applied stress fNg. Conversely,
the stress fNg at which the next microcrack forms can be calculated
for a given �x, �y, and �T by equating the strain energy difference
before and after the formation of the next microcrack to the critical
strain energy difference given by Eqs. (5–7). Equations similar to (8–
10) can be obtained which include the thermal effects.

The procedure of including the effect of the thermal stresses
compared with the uniaxial model of Nairn. The �902=0� laminate
discussed in Sec. V was used for this purpose. A laminate with a
given crack density is subjected to a temperature variation�T and is
subjected to biaxial stressesNx andNy such that �� 2:0. The values
of Nx or Ny at which the next microcracks form are calculated.
Comparison of the predictions has been presented in Table 3. The
overall comparison is excellent.

VII. Summary

A novel extension to a methodology proposed by Nairn based on
finite fracture mechanics is presented which predicts microcrack
densities in symmetric cross-ply laminates subjected to biaxial
mechanical and thermal loads. Both load and displacement control
conditions were considered. Themethod was compared to published
data.

An FE method was presented to obtain the laminate stiffness
matrix �A� of a bidirectionally microcracked laminate with arbitrary
crack densities. Approximate analytical expressions for the
components of �A� as a function of the two crack densities were
derived using the response surface approximation techniques. These
analytical expressions were used to predict the progressive
bidirectional microcracking of a cross-ply laminate. The procedure
was further extended to predict the formation of microcracks due to
thermal stresses.

The proposed procedure is limited to cross-ply composites loaded
in their principal material directions by a uniform in-plane stressfield
without shear. Furthermore, crack formation is assumed to occur
instantaneously and across the whole width and length of the
composite. The current approach should be viewed as an initial
contribution to predict progressive bidirectional microcracking in
thermomechanically loaded composites.

Appendix

The force resultants are defined as

fNg �
XNL

k�1

f��k�g � tk (A1)

where fNg is the 2 � 1 stress resultant vector, f��k�g is the 2 � 1
vector of ply stresses in the kth ply, tk is the thickness of the kth ply,
andNL is the number of layers in the laminate. The ply-stress vector
can be written in terms of ply stiffness and strains as

Fig. 8 Fitting complete cubic polynomials with least squares

approximation over 56 data points (black dots) obtained from FE

simulations. a) N0
t1, b) N

0
t2, and c) U0.
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f��k�g � � �Q�k�� � �f"g � f��k�g ��T� (A2)

where � �Q�k�� is the 2 � 2 stiffnessmatrix of the kth ply, f"g is the 2 � 1
laminate strain vector, f��k�g is the 2 � 1 vector of CTEs of the kth
ply, and�T is the temperature difference with reference to the stress
free temperature. Substituting Eq. (A2) into Eq. (A1), we obtain

fNg � �A�f"g � fNtg (A3)

where �A� is the 2 � 2 laminate stiffness matrix, and the “thermal
force” vector fNtg is defined as

fNtg �
XNL

k�1

� �Q�k��f��k�g � tk�T (A4)

The strain energy density in the kth ply is given by

U�k�
0 � 1

2
f��k�g�f"g � f��k�g ��T� (A5)

Substituting for f��k�g from Eq. (A2) and simplifying, we obtain

U�k�
0 � 1

2
f"gT � �Q�k��f"g � f"gT � �Q�k��f��k�g ��T

	 1
2
f��k�gT � �Q�k��f��k�g ��T2 (A6)

The strain energy density of a unit cell for displacement control
conditions is then given by integration of Eq. (A6) over the
composite thickness.

U�
�
1

2
f"gT �A�f"g � f"gTfNtg

	
XNL

k�1

1

2
f��k�gT � �Q�k��f��k�g ��T2tk

�
� 1
�x

� 1
�y

(A7)

where �x and �y are the crack densities defining the unit cell. By
substituting for f"g from Eq. (A2) into Eq. (A7) we get the strain
energy in a unit cell for load control conditions.

U�
�
1

2
fNgT � �A�fNg � 1

2
fNtgT � �A�fNtg

	
XNL

k�1

1

2
f��k�gT � �Q�k��f��k�g ��T2tk

�
� 1
�x

� 1
�y

(A8)
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