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A finite-element-method-based micromechanics has been used for predicting the orthotropic properties of open-

cell foams that have tetrakaidecahedral unit cells. Foams with equisided and Kelvin-elongated tetrakaidecahedron

as unit cells are studied. The results for elastic constants from the finite element models agree well with those of

available analytical models. The struts weremodeled using bothEuler–Bernoulli andTimoshenko beam elements. It

is found that classical beam theory overpredicts the elastic moduli when the struts have smaller length-to-thickness

ratios. The effect of varying strut cross section on the elastic constants is studied. The variation is assumed to be such

that the strut cross section gradually decreases from maximum value at the support ends to minimum value at the

beam midsection. It is found that for the same relative density, foams with varying cross sections have much lower

elastic moduli than foams with uniform cross sections.

Nomenclature

A = cross-sectional area of the strut
a1 = length of the representative volume element
a2 = width of the representative volume element
a3 = height of the representative volume element
b = dimension of the top and the bottom squares of the

elongated tetrakaidecahedron unit cell
�C� = stiffness matrix of the foam
d = length of the side of the equilateral triangle cross

section
fij = force in direction i when displacement is applied in

direction j
Ix, Iy = moment of inertia in the X and the Y directions
Ei = Young’s modulus along axis i
Es = elastic modulus of the strut material
Gij = shear modulus in direction j on the plane for which

the normal is in direction i
J = torsion constant
L = dimension of the long edges of the elongated

tetrakaidecahedron unit cell
l = length of each individual edge (strut) of the

equisided tetrakaidecahedron
r = radius of the three-cusp hypocycloid cross section
V = volume of the representative volume element
ui = displacement in the i direction
�ui = difference in translational displacement along axis i
��i = difference in rotational displacement along axis i
"ij = macrostrain
"0 = applied macrostrain
"1, "2, "3 = strain components in the principal X, Y, and Z

directions
�ij = Poisson’s ratio
�s = Poisson’s ratio of the strut material

�s = density of the strut material
�=�s = relative density of the foam

I. Introduction

C ELLULAR solids are materials made out of solid strut or thin
platelike structures bridged together. Theyoccur in nature in the

form of honeycombs, wood, bone, cork, etc. These materials possess
a unique combination of properties such as low thermal conductivity,
low density, and high energy absorption [1]. Foams are a class of
cellular solids, generally made by dispersing gas into a liquid
material and then cooling it to solidify. They are categorized as open-
cell and closed-cell foams. Depending on the solid materials that are
made into foams, they are also categorized as polymeric foams,
metallic foams, and ceramic foams [1]. Because of developments in
materials science and manufacturing techniques, advanced foams
have found potential for use in automobile, aircraft, and spacevehicle
structures.A special example is the use of foams in external fuel tanks
and thermal protection systems of space vehicles. It has been
accepted that packed in a body-centered cubic structure, a tetra-
kaidecahedron (a 14-faced polyhedron) satisfies the minimum
surface energy condition for monodispersed bubbles [2]. Micro-
cellular graphitic carbon foams were first developed at the U.S. Air
Force Research Laboratory in the 1990s [3]. Clearly, it has been
proven that the repeating unit cell of this foam can be approximated
by a regular tetrakaidecahedron [4].

The catastrophic failure of Space Shuttle Columbia in
February 2003 has given the necessary impetus to understand and
reduce the likelihood and severity of foam-shedding events that occur
from the shuttle’s external fuel tanks. Currently, there is ongoing
research focused on understanding the mechanisms that cause foam
fracture and debris liberation [5]. This mandates a thorough
understanding of the foam’s mechanical response behavior, and
characterizationofitselasticproperties is thefirst step in thatdirection.

In the same context, there is also ongoing research in the field of
aerostructural composites focused on characterizing materials using
principles of micromechanics [6,7]. These methods are based on
simulating a characteristic representative part of the structure that
periodically repeats itself, instead of simulating the entire model.
Foams with simple representative unit-cell structures from cube [8]
to hexagonal cell structures to a regular tetrakaidecahedron [4,9] as
the unit cell have been carefully studied and have been characterized
for their mechanical behavior.

Currently, BX-265 and NCFI24-124 are the two foams used most
exclusively in space shuttle external tanks. The photomicrographs
[10] of these two foams are shown in Figs. 1a and 1b. Analysis of the
foam structure from thesemicrographs has shown that due to forming
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and rising processes that take place during fabrication, the unit cell of
these foams is elongated in one of the three principal directions.
Hence, this unit cell is called an elongated tetrakaidecahedron and the
elongated direction is referred to as the rise direction. This makes the
elongated foam strictly orthotropic.

Broadly, the available literature on foam mechanics can be
classified into characterizing foams based on experimental studies
[10–12] or characterizing foams based on analytical models [13,14].

Analytical models that have been developed focus primarily on
predicting themechanical and strength properties. Assuming that the
unit-cell edges behave like a three-dimensional beam, the mechanics
of deformation of the tetrakaidecahedron unit cell leads to a set of
equations for the effective Young’s modulus, Poisson’s ratio, and
tensile strength of the foam in the principal material directions [10].
The equations for these elastic constants have been derived and
written in terms of the cell edge length and the axial, flexural, and
torsional rigidities of the strut cross section. The variation of these
properties with relative density (the ratio of the density of the cellular
medium to the density of the solid strut material) of the foam has also
been expressed.

The current paper explores the possibility of using finite-element-
based micromechanics procedures to calculate the elastic properties
of foam materials. To do this, periodic boundary conditions have
been derived and applied to the unit-cell model. The results obtained
from this method have been compared with the results obtained from
existing analytical models [10] and they have been shown to match
well for some of the elastic constants. The advantages of using finite-
element-based methods over analytical methods have also been
highlighted.

The analytical model by Zhu et al. [14] for predicting the elastic
moduli, Poisson ratios, and shear moduli has been used for
comparison with the foam modeled with equisided tetrakaidecahe-
dron as a unit cell. The analytical model by Sullivan et al. [13] has
been used for comparison with the foam modeled with elongated
tetrakaidecahedron as the unit cell. The requisite expressions from
both these papers [13,14] are reproduced in the Appendix, for
completeness.

II. Finite Element Modeling of a
Tetrakaidecahedron Unit Cell

In general, a tetrakaidecahedron has 24 vertices and 36 edges
comprising eight six-sided polygons and six four-sided polygons
(Fig. 2). It is more precisely called a truncated octahedron, since it is
created by truncating the corners of an octahedron [15]. A regular
tetrakaidecahedron is generated by truncating the corners of a cube
[14]. This is called an equisided tetrakaidecahedron. If it is generated
by truncating the corners of a cuboid or hexahedron, it is called an
elongated tetrakaidecahedron [10]. An equisided tetrakaidecahedron
has all edges of equal length.

In this study, the commercially available ABAQUS® finite
element software is employed for developing themodel. Amodel for
the equisided tetrakaidecahedron is shown in Fig. 2. The principal
directions X, Y, and Z are considered to be along the lines passing
through the centers of the squares (Fig. 2) on the front and back, the
left and right, and the top and the bottom, respectively. Including the
squares and the hexagons, the tetrakaidecahedron unit cell ismade up
of 24 beam elements.

The geometry and the material properties of the constituent strut
material used in the equisided tetrakaidecahedron model are listed in
Table 1. The strut material is considered as isotropic. In the current
example, the beam cross sections are approximated to be an
equilateral triangle. The dimensions required to completely describe
an equisided tetrakaidecahedron unit cell are shown in Fig. 3:
namely, the length of the strut of the unit cell (L) and the side of the
equilateral triangle (d). The beam cross sections are oriented such
that the bisector of one of the angles of the triangular cross section at
the center of the strut passes through the unit-cell center (Fig. 4). The
cross-sectional properties used in themodel are also listed in Table 1.

Similar to an equisided tetrakaidecahedron, the geometry and the
material properties of the constituent strut material used in the
elongated tetrakaidecahedron model are listed in Table 2. The strut
material is again considered to be isotropic. Actual microstructural
measurements [10] indicate that the strut cross section in
polyurethane foams is actually a three-cusp hypocycloid (Fig. 5).

Fig. 1 Photomicrographs of foams used in insulation of external fuel tanks of space vehicles a) NCFI24-124 and b) BX-265 [10].

Fig. 2 Equisided tetrakaidecahedron geometry: eight hexagons and six

squares.
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The dimensions required to completely describe the elongated
tetrakaidecahedron unit cell are shown in Fig. 5: namely, the length of
the strut of the unit cell on the top and the bottom squares (b), the
length of all the other struts (L), the radius of the three-cusp

hypocycloid cross section (r), and the orientation of the struts (�).
The cross-sectional properties used in themodel are listed in Table 2.
It should be noted that even though there are 36 edges in the geometry
of the tetrakaidecahedron, only 24 beam elements have been
modeled. This is due to periodicity of the unit cell. Out of the six
squares (three pairs: top and bottom pair, left and right pair, and front
and back pair) only the top, front, and right squares are modeled, as
shown in Fig. 6.

The use of beam elements to model the struts needs some
explanation. The beam model will be valid only if the struts are
slender and behave like a beam.This requires a slenderness ratioL=r0

(where L is the length of the strut and r0 is the radius of gyration
defined by r02 � I=A) greater than about 10. If the slenderness ratio is
less than 10 but greater than 6, one can use shear-deformable beam
elements and hope to obtain good results. If L=r0 is less than 6, one
cannot use beamelements tomodel the deformation of the struts.One
needs to resort to solid elements.

Table 1 Material properties of the strut, geometric

properties, and cross-sectional properties of the

equisided tetrakaidecahedron unit cell

Material properties of the strut
Density, �s, kg=m

3 1650
Elastic modulus, Es, GPa 23.42
Poisson ratio, �s 0.33

Geometry of the equisided tetrakaidecahedron unit cell (Fig. 3)
L, mm 1
d, mm 0.06
Relative density 0.001653

Cross-sectional properties (equilateral triangle)
Cross-sectional area, A, m2 1:5588 � 10�9

Moment of inertia, Ix, Iy, m
4 2:3382 � 10�19

Torsion constant, J, m4 4:6765 � 10�19

Fig. 3 Defining the geometry of an equisided tetrakaidecahedron unit

cell.

Fig. 4 Defining the orientation of the beams of the unit cell.

Table 2 Material properties of the strut, geometric

properties, and cross-sectional properties of the

elongated tetrakaidecahedron unit cell

Material properties of the strut
Density �s, kg=m

3 1650
Elastic modulus Es, GPa 17
Poisson ratio �s 0.33

Geometry of the elongated tetrakaidecahedron unit cell
(Fig. 5)
L, �m 77.2
b, �m 35.6
�, deg 53.57
r, �m 26
H, �m 248.85
D, �m 142.04
Relative density 0.03481

Cross-sectional properties (three-cusp hypocycloid)
Cross-sectional area A, m2 1:024 � 10�10

Moment of inertia Ix, Iy, m
4 1:403 � 10�21

Torsion constant J, m4 2:806 � 10�21

Fig. 5 Defining the geometry of an elongated tetrakaidecahedron unit

cell.
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For both equisided and elongated tetrakaidecahedrons, two-node
beam elements (classical Euler–Bernoulli beam element, B33 in the
ABAQUSmaterial library)withcubicformulationwereusedtomodel
the unit cell. Three-node quadratic elements (shear-deformable
Timoshenko beam elements, B32 in the ABAQUS material library)
wereusedinsomecases tostudytheeffectsofsheardeformationonthe
overall properties of the foam.

III. Periodic Boundary Conditions

For computing the elastic constants using micromechanics, we
need equations that relate the microstrains to the corresponding
macrostrains. Using these equations, the periodic boundary condi-
tions (BCs) can be derived. From the periodicity of the cell structure
(Fig. 7), the representative volume element (RVE) is identified to be
the smallest cuboid that completely encloses the tetrakaidecahedron,
such that six square sides of the tetrakaidecahedron are on the six
faces of the cuboid.

In this section we derive the periodic boundary conditions that
will be used to derive the elasticity matrix of the idealized foam.
Consider the deformation gradient "ij � ui;j. We would like to
subject the RVE to a deformation such that the average of the above
deformation gradient is equal to a given �"ij. Then this condition can
be represented as

�" ij �
1

V

Z
V

@ui
@xj

dV (1)

where V is the RVE volume. By applying divergence theorem to the
right-hand side of Eq. (1), the volume integral is converted into
surface integral as

�" ij �
1

V

Z
S

uinj dS (2)

where the integration is performed over the surface of the cuboid.
Noting that nj is nonzero only on two surfaces that are normal to the
j direction, Eq. (2) can be written as

�" ij �
1

V
�u��j�i � u��j�i �Aj (3)

where Aj is the area of the face normal to j direction, and u��j�i �
u��j�i represents the difference in the displacements ui on the two
surfaces normal to the j direction. The superscripts �j and �j
indicate, respectively, the two surfaces with positive and negative
normals in the j direction. From the above equation, we obtain the
periodic boundary condition as

�u��j�i � u��j�i � � �"ij
V

Aj
� �"ijaj; i; j� 1; 3 (4)

Then the periodic BC for the three normal strains can be written as

�u��j�i � u��j�i � � �"iiai �i� 1; 2; 3; no summation over i� (5)

For the case of shear strains, the periodic BCs are not unique, as the
shear strain is given by the sum of two deformation gradients:

Fig. 6 Defining the geometry of an elongated tetrakaidecahedron unit

cell.

Fig. 7 Identifying the RVE.

Table 3 Periodic boundary conditions:

unit normal strain "xx � 1a

Difference in displacements

Pair of node numbers Ux Uy Uz

Top–bottom (faces normal to the principal Z axis)

16–2 0 0 0
14–22 0 0 0
9–6 0 0 0
11–15 0 0 0
Front–back (faces normal to the principal X axis)

7–9 a1 0 0
3–24 a1 0 0
5–1 a1 0 0
8–20 a1 0 0
Left–right (faces normal to the principal Y axis)

18–13 0 0 0
4–10 0 0 0
21–12 0 0 0
23–17 0 0 0

aThe difference in rotational displacements ��x; �y; �z�
between the node pairs shown is zero for all load cases.

Table 4 Periodic boundary conditions:

unit normal strain "yy � 1a

Difference in displacements

Pair of node numbers Ux Uy Uz

Top–bottom (faces normal to the principal Z axis)

16–2 0 0 0
14–22 0 0 0
9–6 0 0 0
11–15 0 0 0
Front–back (faces normal to the principal X axis)

7–9 0 0 0
3–24 0 0 0
5–1 0 0 0
8–20 0 0 0
Left–right (faces normal to the principal Y axis)

18–13 0 a2 0
4–10 0 a2 0
21–12 0 a2 0
23–17 0 a2 0

aThe difference in rotational displacements ��x; �y; �z�
between the node pairs shown is zero for all load cases.
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�ij � ui;j � uj;i. Thus, one can apply either deformation gradient
alone or both together. If, for example, one applies only ui;j, then the
BCs take the form

�u�ji � u
�j
i � � �� ijaj; �u�ij � u�ij � � 0 (6)

On the other hand, if one chooses ui;j � uj;i � �ij=2, then two sets of
BCs have to be applied as shown below:

�u�ji � u
�j
i � �

��ijaj
2

; �u�ij � u�ij � �
��ijai
2

(7)

The above periodic BCs are explicitly presented in Tables 3–8 in the
form of difference in displacements between the set of nodes for the
three unit strain load cases in the three principal directions.
Figures 8–10, show the pairs of node numbers that are subjected to
these periodic boundary conditions. By using the reaction forces that
result after the unit normal strains are applied, the stiffness matrix for
the foam can be computed. It should be noted that beam elements
have rotational degrees of freedom, and we need to have periodic
BCs for these degrees of freedom also. Since we do not have any
curvature in the foam, the corresponding periodic BCs take the form

Table 5 Periodic boundary conditions:

unit normal strain "zz � 1a

Difference in displacements

Pair of node numbers Ux Uy Uz

Top–bottom (faces normal to the principal Z axis)

16–2 0 0 a3
14–22 0 0 a3
9–6 0 0 a3
11–15 0 0 a3
Front–back (faces normal to the principal X axis)

7–9 0 0 0
3–24 0 0 0
5–1 0 0 0
8–20 0 0 0
Left–right (faces normal to the principal Y axis)

18–13 0 0 0
4–10 0 0 0
21–12 0 0 0
23–17 0 0 0

aThe difference in rotational displacements ��x; �y; �z�
between the node pairs shown is zero for all load cases.

Table 6 Periodic boundary conditions:

unit shear strain �xy � 1a

Difference in displacements

Pair of node numbers Ux Uy Uz

Top–bottom (faces normal to the principal Z axis)

16–2 0 0 0
14–22 0 0 0
9–6 0 0 0
11–15 0 0 0
Front–back (faces normal to the principal X axis)

7–9 0 a1=2 0
3–24 0 a1=2 0
5–1 0 a1=2 0
8–20 0 a1=2 0
Left–right (faces normal to the principal Y axis)

18–13 a2=2 0 0
4–10 a2=2 0 0
21–12 a2=2 0 0
23–17 a2=2 0 0

aThe difference in rotational displacements ��x; �y; �z�
between the node pairs shown is zero for all load cases.

Table 7 Periodic boundary conditions:

unit shear strain �yz � 1.a

Difference in displacements

Pair of node numbers Ux Uy Uz

Top–bottom (faces normal to the principal Z axis)

16–2 0 a2=2 0
14–22 0 a2=2 0
9–6 0 a2=2 0
11–15 0 a2=2 0
Front–back (faces normal to the principal X axis)

7–9 0 0 0
3–24 0 0 0
5–1 0 0 0
8–20 0 0 0
Left–right (faces normal to the principal Y axis)

18–13 0 0 a3=2
4–10 0 0 a3=2
21–12 0 0 a3=2
23–17 0 0 a3=2

aThe difference in rotational displacements ��x; �y; �z�
between the node pairs shown is zero for all load cases.

Table 8 Periodic boundary conditions:

unit shear strain �xz � 1a

Difference in displacements

Pair of node numbers Ux Uy Uz

Top–bottom (faces normal to the principal Z axis)

16–2 a1=2 0 0
14–22 a1=2 0 0
9–6 a1=2 0 0
11–15 a1=2 0 0
Front–back (faces normal to the principal X axis)

7–9 0 0 a3=2
3–24 0 0 a3=2
5–1 0 0 a3=2
8–20 0 0 a3=2
Left–right (faces normal to the principal Y axis)

18–13 0 0 0
4–10 0 0 0
21–12 0 0 0
23–17 0 0 0

aThe difference in rotational displacements ��x; �y; �z�
between the node pairs shown is zero for all load cases.

Fig. 8 Node pairs subjected to periodic boundary conditions: left and

right faces.
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����j�i � ���j�i � � 0; i; j� 1; 3 (8)

IV. Derivation of the Elastic Constants

In this section we derive the procedures for determining the
equivalent elastic constants of the tetrakaidecahedral foam idealized
as an orthotropic material. The RVE of the foam is a cuboid. The
equivalent orthotropic material has its principal material directions
parallel to the edges of the cuboid. In this coordinate system, the
normal and shear deformations are uncoupled. First, we will derive
the equations to determine Young’s moduli and Poisson’s ratios in
the principal material coordinates, 1, 2, and 3. The (macroscale)
stress–strain relations of the foam are written as

(
�1
�2
�3

)
�

C11 C12 C13

C21 C22 C23

C31 C32 C33

2
4

3
5( "1"2

"3

)
(9)

We subject the RVE to three independent deformations such that,
in each case, only one normal strain is nonzero and other two normal
strains are zero. For example, in the first case we apply periodic
boundary conditions such that the cuboid expands only in one
direction and the strains in the other two directions are equal to zero,
i.e., the dimensions of the cuboid in those directions do not change.
Then the macrostrains are given by

"1 � 1; "2 � 0; "3 � 0 (10)

Substituting Eq. (10) in Eq. (9), we get

(
�1
�2
�3

)
�

C11 C12 C13

C21 C22 C23

C31 C32 C33

2
4

3
5( 1

0

0

)
(11)

Let the corresponding force resultants (ABAQUSoutput) in the three
faces of the unit cell normal to the 1, 2, and 3 directions be,
respectively,F11, F21, and F31 (see Fig. 11). Then the corresponding
macrostresses are obtained as

�1 �
F11

A1

; �2 �
F21

A2

; �3 �
F31

A3

(12)

where A1, A2, and A3 are areas normal to the 1, 2, and 3 directions
representing areas of the square surfaces in the 1, 2, and 3 directions
of the RVE in the case of the equisided tetrakaidecahedron unit cell
and representing areas of the rectangular surfaces in the 1, 2, and 3
directions of the RVE in the case of the elongated tetrakaidecahedron
unit cell.

Similarly, we can deform the RVE in the other two directions and
calculate second and third columns of �C�. These procedures are
similar to those used by Karkkainen and Sankar [6].

For the case of shear, the calculations can be simplified, as there is
no coupling between shear deformation and the normal deformation
or between shear deformations in different planes. The periodic BCs
for shear strains are given in Eqs. (6) and (7). The straightforward
method of determining the shear modulus Gij will be to relate the
strain energy in the RVE to the strain-energy density due to shear:

U� 1

2
Gij�

2
ijV or Gij �

2U

�2ijV
(13)

V. Effect of Varying Cross Section

It has been observed [16] that, in reality, the cross-sectional area of
the struts are not uniform but they gradually vary along the length of
the beam, with the cross-sectional area being maximum at the two
ends of the beam and minimum at the center. For example,

Fig. 9 Node pairs subjected to periodic boundary conditions: front and
back faces.

Fig. 10 Node pairs subjected to periodic boundary conditions: top and

bottom faces.

Fig. 11 RVE showing force resultants in the three directions when

subjected to normal strain in the one direction on the two faces x� a

and �a.
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microstructural measurements [16] indicate that the cross-sectional
area varies according to the following function:

A�x� � A0f�x� � A0

�
86
x4

l4
� x

2

l2
� 1

�
(14)

where A0 is the Area at the midspan of the strut, x is any point along
the length of the strut (� l

2
	 x 	 � l

2
), and l is the length of the strut.

The elastic constants of the foam with varying cross section could
be determined by following the procedures similar to that of uniform-
cross-section foam. In fact, the struts can bemodeled using one beam
element as before but with equivalent cross-sectional properties.
Since the deformations (strains, curvatures etc.) in a beam are
inversely proportional to A, the equivalent uniform cross-sectional
properties I and J can be readily expressed as

1

Aeff

� 1

l

Z
l=2

�l=2

dx

A�x� ;
1

Ieff
� 1

l

Z
l=2

�l=2

dx

I�x�
1

Jeff
� 1

l

Z
l=2

�l=2

dx

J�x� (15)

where the suffix eff denotes effective properties. To determine the
above effective properties, one has to assume the nature of the cross
section. In this studywe assume that the cross section of the strut is an
equilateral triangle. Accordingly, the cross-sectional dimension at
midspan d0, corresponding areaA0, and moments of inertia I0 and J0
are calculated as follows:

A0 �
���
3
p

4
d20 (16)

I0 �
���
3
p

96
d40 (17)

Table 9 Results obtained for the properties of an equisided tetrakaidecahedron unit cell with relative density 0.1653%

Finite element model

Property Euler–Bernoulli
(2-node cubic)

Shear-deformable
(3-node quadratic)

% differencea Analytical model [14] % differenceb

Ex � Ex � Ez, GPa 46:7 � 10�6 46:6 � 10�6 0.24 46:4 � 10�6 0.55
�xy � �yz � �xz 0.498 0.498 0.11 0.497 0.14
Gxy �Gyz �Gxz, GPa 14:9 � 10�6 14:8 � 10�6 0.43 14:9 � 10�6 0.35

aBetween Euler–Bernoulli model and shear-deformable model.
bBetween analytical model and finite element model.

Table 10 Results obtained for the properties of an elongated tetrakaidecahedron unit cell with relative density 3.45%

Finite element model

Property Euler–Bernoulli
(2-node cubic)

Shear-deformable
(3-node quadratic)

% differencea Analytical model [13,17] % differenceb

Ex � Ey, MPa 7.09 6.5 �9:04 7.07 0.29
Ez, MPa 20.63 19.28 �6:99 20.8 �0:82
�xy � �yx 0.0588 0.0757 22.28 0.0598 �1:84
�xz � vyz 0.3745 0.3694 �1:39 0.373 0.47
�zx � vzy 1.0934 1.0991 0.52 1.09 �0:31
Gxy, MPa 2.07 1.95 �6:03 2.06 0.39
Gyz �Gxz, MPa 6.74 6.25 �7:88 6.66 1.17

aBetween Euler–Bernoulli model and shear-deformable model.
bBetween analytical model and finite element model.

Fig. 12 Deformed and undeformed configurations of the unit cell subjected to a) shear strain and b) normal strain.
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J0 �
A2
0

5
���
3
p (18)

The variation of moments of inertia, using Eq. (14), along the length
of the strut can then be written as

I�x�� I0
�
86
x4

l4
� x

2

l2
� 1

�
2

; J�x�� J0
�
86
x4

l4
� x

2

l2
� 1

�
2

(19)

where

� l
2
	 x 	 � l

2

It is desirable to compare the properties of foam with struts having a
varying cross section to foam with struts having a uniform cross
section. One approach to get a good comparison is by keeping the
relative density the same in both cases. This can be achieved by
keeping the volume of the strut the same in both cases:Z �l=2

�l=2
A�x� dx� �Al (20)

where �A is the area of the uniform cross section, and l is the length of
the strut. Once �A is calculated, one can determine the corresponding

cross-sectional dimension �d and the moments of inertia �I and �J.

VI. Results and Discussion

Results obtained for the properties of equisided and elongated
tetrakaidecahedron unit cells are shown in Tables 9 and 10, respec-
tively. The results for E and � match very well with the available
analyticalmodels: Zhu et al. [14] for an equisided tetrakaidecahedron

unit cell and Sullivan et al. [13,17] for the elongated tetra-
kaidecahedron unit cell. The maximum error in the elastic constants
was only 0.55% for the elasticmoduli and 0.35% for the shearmoduli
in the case of the equisided tetrakaidecahedron unit cell. The
maximum error in the elastic constants was 0.82% in the case of the
elongated tetrakaidecahedron unit cell.

The deformed and undeformed configurations of the unit cell
for various macrostrains are shown in Figs. 12a and 12b. In addi-
tion, results from parametric studies are shown in Fig. 15 for
elongated foam.

It is interesting to note that with the equisided tetrakaidecahedron
as the unit cell, the results for the properties using either Euler–
Bernoulli or shear-deformable (Timoshenko) beam elements do not
differ much (0.24% difference). This is because of the assumed beam
aspect ratio (L=d� 17; see Fig. 3 andTable 1).With the beams being
slender, the classical beam theory assumption holds well and the
shear deformation is negligible. Hence, the Euler–Bernoulli and the
Timoshenko beams give comparable results.

However, in the case of the elongated tetrakaidecahedron wherein
the beams are short and thick, especially on the squares on the top and
the bottom faces (Fig. 5, Table 2), the values for the properties have
significant difference when a shear-deformable element is assumed
instead of a Euler–Bernoulli beam element. The elastic modulus
assuming shear-deformable beams is 9% lesser than the elastic
modulus assuming Euler–Bernoulli beams, as shown in Table 10.

Figures 13 and 14 show the variation of elastic modulus and
Poisson ratio with relative density. It is seen that the elastic modulus
varies as square of the relative density. Figure 15 shows the variation
of the elastic moduli in the rise direction and perpendicular to rise
direction with relative density for the elongated tetrakaidecahedron
unit cell. It is seen that as the relative density increases, the difference
between the properties obtained from using Euler–Bernoulli
elements and Timoshenko elements keeps increasing. Hence, the
existing analytical models [13,14,17] assuming the unit-cell edges
completely made out of Euler–Bernoulli beams would not be
accurate, and bringing in the effect of shear deformation in the
analytical formulation would be important.

The results of elastic constants for the variable-cross-section foam
alongwith that of idealized uniform-cross-section foamare presented
in Table 11. The relative density is assumed to be 0.165% in both

Fig. 13 Variation of elastic modulus with relative density for an
equisided tetrakaidecahedron unit cell (curve-fit equation: Ez�
16; 545��=�s�

2 � 4:411��=�s� � 0:0034).

Fig. 14 Variation of Poisson ratio with relative density for an equisided

tetrakaidecahedron unit cell.

Fig. 15 Variation of elastic moduli in the rise direction (Ez) and
perpendicular to the rise direction (Ex andEy)with relative density for an

equisided tetrakaidecahedron unit cell.

Table 11 Results compared for the properties of an equisided

tetrakaidecahedron unit cell with relative density 0.1653%

with uniform cross section and varying cross section

Uniform cross
section

Varying cross
section

Ratio

Elastic modulus E, Pa 46,402 19,172 2.42
Shear modulus G, Pa 14,920 6183 2.41
Moment of inertia I, m4 2:34 � 10�19 0:965 � 10�19 2.42
Poisson ratio � 0.4975 0.4989 1.00
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cases. It is seen that Young’s modulus and shear modulus of ideal
foams with uniform cross section is about 2.4 times that of varying-
cross-section foam. The reason for this is that most of the solid
material is near the ends (Figs. 16 and 17) of the strut, thus making
majority of length (about 60%) in themiddle slender. This reduces the
moments of inertia considerably,making the strutsmoreflexible. The
variation of themoment of inertia, area of cross section, and diameter
across the length of the strut are compared with those of uniform-
cross-section foam in Figs. 16 and 17, respectively. Note that our
analysis is restricted to foams that have a relative density below
0.2%, wherein the classical beam theory assumptions are valid.
For higher relative densities, one should model the struts using
three-dimensional solid elements to obtain accurate results, e.g.,
Gong et al. [16].

VII. Conclusions

Finite-element-basedmicromechanics have been used to calculate
the elastic properties of foams with tetrakaidecahedral unit cells. The

results for elastic constants match well with the available analytical
models. It is evident that using finite element methods gives a
flexibility to choose between Euler–Bernoulli formulation or the
shear-deformable formulation or a mix of both in the same unit cell
over the existing analytical models. The biggest advantage of using
finite element methods is that any kind of a unit cell with unequal
sides that might be obtained from microstructural measurements
could be modeled with ease and the technique for computing
properties would still remain the same. It would also be easy to
extend the same finite element methods to calculate inelastic behav-
ior of the foam. The same finite-element-based micromechanics
methods could also be easily used in the unit-cell model to generate
multi-axial failure envelopes for foams. The effect of varying cross
sections on the elastic properties has been studied, and it has been
shown that for the same relative density, foams with varying cross
sections are less stiff compared with foams with uniform cross
sections.

Note that in the current micromechanics-based approach, the
assumption is that the foam ismade out of exactly identical unit cells.

Fig. 16 Variation of area of cross section and the diameter of the cross section along the length of the strut.

Fig. 17 Variation of moment of inertia along the length of the strut.
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However, in reality, as seen in themicrographs in Fig. 1, the cell sizes
can vary considerably and there are many discontinuities in the real
material. Oneway of obtaining an estimate of properties of foamwith
varying cell sizes is as follows. The finite-element-based micro-
mechanics approach presented here could be used to perform a
sensitivity analysis of the elastic constants due to variation in param-
eters such as geometry and strut properties and then an appropriate
averaging scheme could be used to determine the averaged
properties.

Appendix: Analytical Expressions for Foam
Elastic Constants

Summary of equations from Zhu et al. [14]:
Young’s modulus E100:

1

E100

� 1

6
���
2
p

�
12L2

EA
� L

4

EI

�
(A1)

Poisson ratio �12:

�12 � 0:5

�
AL2 � 12I

AL2 � 12I

�
(A2)

Shear modulus G12:

1

G12

� 2
���
2
p
L2

EA
� 2

���
2
p
L4

6EI

�
8EI �GJ
5EI �GJ

�
(A3)

Summary of equations from Sullivan et al. [13]:
Young’s moduli �Ex; Ey�:

Ex�Ey�
12EI

L sin��2L3sin2�� b3��12I=A��2Lcos2�� b�� (A4)

Young’s modulus Ez:

Ez �
24EI sin �

L2�cos2�� �12I=AL2�sin2���
���
2
p
L cos �� b�2

(A5)

Poisson ratios:

�xy � �yx �
b�Ab2 � 12I�

12I�2Lcos2�� b� � A�2L3sin2�� b3� (A6)

�xz � �yz �
�AL2 � 12I��2L cos ��

���
2
p
b� cos �

2�12I�2Lcos2�� b� � A�2L3sin2�� b3�� (A7)

�zx � �zy �
���
2
p
L�AL2 � 12I� cos �sin2�

�12Isin2�� AL2cos2���
���
2
p
L cos �� b�

(A8)

Summary of equations from Sullivan et al. [17]:
Shear modulus Gxy:

1

��
4l sin �

�
b

EA
�

l3��2� 4 b
l
cos2��EI � �b

l
sin2��GJ�

12EI��2� b
l
cos2��EI � �b

l
sin2��GJ�

��
(A9)

Shear modulus Gyz:

1

��
l

4 sin �

�
L�b

l
cos ��

���
2
p
�1� sin2���2

EA
� L3��1�EI�2 � �2�EIGJ� � �3�GJ�2�

12EI��1� sin2�� 2 b
l
sin2���EI�2 � �2� 2 b

l
cos2��EIGJ � �cos2���GJ�2�

��

Please note that �1, �2, and �3 expressions have not been listed here
and can be found in [17].
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