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This paper is concerned with homogenization of a corrugated-core sandwich panel, which is a candidate structure
for integral thermal protection systems for space vehicles. The focus was on determination of thermal stresses in the
face sheets and the web caused by through-the-thickness temperature variation. A micromechanical method was
developed to homogenize the sandwich panel as an equivalent orthotropic plate and calculate the equivalent thermal
forces and moments for a given temperature distribution. The same method was again used to calculate the stresses in
the face sheets and the core. The method was demonstrated by calculating stresses in a sandwich panel subjected
to a temperature distribution described by a quartic polynomial in the thickness direction. Both constrained and
unconstrained boundary conditions were considered. In the constrained case the plate boundaries are constrained
such that there are no deformations in the macroscale sense. The unconstrained case assumes that there are no force
and moment resultants in the macroscale. The results for stresses are compared with that from a three-dimensional
finite element analysis of the representative volume element of the sandwich structure, and the comparison was found
to be within 5% difference. The micromechanical analysis, which is less time consuming, will be useful in the design

and optimization of integral thermal protection system structures.

Nomenclature

{D}© = deformation vector of the eth component
(micro deformation)

{D}" = deformation vector of the unit cell
(macrodeformation)

d = height of the sandwich panel (centerline to centerline)

e = component index of the corrugated core

F Em) = nodal force on the finite element method model

l = length of the cantilever beam

oy = transformed lamina stiffness matrix

0,, O, = shear force on the unit cell

K " = weblength

[Tp]® = deformation transformation matrix of the ith
component of the corrugated core

18R = bottom face sheet thickness

trg = top face sheet thickness

tw = web thickness

U = unit cell strain energy

y = local axis of the web

AT = temperature distribution in the integral thermal
protection system

&, = midplane strain

0 = angle of web inclination
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K = curvature
T = local shear stress in the webs
2p = unit cell length

1. Introduction

EDUCING the cost of launching a spacecraft is one of the

critical needs of the space industry. Government and private
corporations use space for various objectives such as reconnaissance,
communications, weather monitoring, military, and other exper-
imental purposes. With every launch the government or corporation
spends a significant amount of money to launch their payload into
space. One of NASA’s goals is to reduce the cost of delivering a
pound of payload into a low Earth orbit by an order of magnitude [1].
One of the most expensive systems of a space vehicle is the thermal
protection system (TPS) [2], which protects the space vehicle from
the extreme planetary reentry temperatures. Hence, reducing the cost
of the TPS could offer significant reduction in overall launch cost.
The TPS’s performance is critical for successful operation of a
spacecraft during planetary reentry.

In the next 20 year NASA plans to send manned space missions to
Mars. The aerocapture approach will be used to slow down the space
vehicle’s velocity as it approaches the planetary atmosphere.
Aerocaputre technology uses the planet’s atmosphere to alter the
space vehicle’s velocity. The vehicle makes a single pass deep into
the planetary atmosphere, using drag to establish a capture orbit.
Aerocapture does not use any propellent for the deceleration of the
space vehicle, therefore a fuel-free entry method could reduce the
typical mass of a space vehicle by half. This reduction in mass allows
for cheaper and smaller space vehicles for interplanetary voyages.
The aerocapture technology will have an impact on the space
vehicle’s TPS because of the excessive aerdoynamic heating from the
atmospheric friction.

In addition to protection from the exteme reentry temperature, the
TPS must satisfy certain general requirements. During ascent and
reentry, the TPS has to withstand temperatures ranging from 650 to
1700 K depending on its position on the vehicle. Because the TPS
forms the outermost surface of the vehicle, it needs to maintain the
aerodynamic shape of the vehicle without excessive deformation,
provide adequate insulation to keep the underlying structure within
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acceptable temperature limits, and be lightweight. The TPS is also
required to be extremely robust, damage-tolerant, and maintain its
configuration to effectively perform its primary task of thermal
protection.

The Space Shuttle’s current TPS technology consists of different
types of materials, such as ceramic tiles and blankets, that are
distributed all over the spacecraft. This technology makes the space
vehicle’s exterior very brittle, susceptible to damage from small
impact loads, and high in maintenance time and cost. To overcome
these difficulties, scientists at NASA developed a metallic advanced-
adapted, robust, metallic, operable, reusable (ARMOR) TPS [3.4].
However, the ARMOR TPS’s load-bearing capabilities are limited,
because large in-plane loads cannot be accommodated under this
design, and it has a complicated geometry.

New TPS concepts are currently being investigated by using
recently developed metallic foams and also innovative core
materials, such as corrugated and truss cores. The integral TPS/
structure (ITPS) design can significantly reduce the overall weight of
the vehicle as the TPS/structure performs the load-bearing function
as well as the thermal protection (see Fig. 1). Sandwich structures
provide high stiffness with relatively lighter weight when compared
with widely used monolithic and laminated structures. The top face
sheet of the TPS panel must withstand temperatures up to 1700 K,
C/SiC textile composites are suitable for such applications. The
bottom face sheetis not subjected to extremely high temperatures and
therefore it can be made from graphite/epoxy textile composites.

Composite corrugated core sandwich structures will be investi-
gated in this paper for use in multifunctional structures for future space
vehicles (Fig. 1). This type of ITPS would insulate the vehicle from
aerodynamic heating as well as carry primary vehicle loads. The
advantages of using such a structure are that it is lightweight and
multifunctional. Forexample, an ITPS configuration offers insulation
as well as load-bearing capabilities, require low maintenance, and the
panels can be large in size, thus reducing the number of panels needed.
The corrugated core sandwich panel is composed of several unit cells.
The unit cell consists of two thin face sheets and an inclined web made
up of composite laminates. The composite corrugated core will be
filled with Saffil®, which is a nonload-bearing insulation made of
alumina fibers. The ITPS will be integrated with the vehicle’s struc-
ture, which promotes low installation and maintenance costs.

Various researchers such as Lok and Cheng [5], Valdevit et al. [6],
and Nordstrand [7] investigated and analyzed metallic truss-core
sandwich panels subjected to mechanical loadings. Biancolini [8]
derived the equivalent stiffness properties of corrugated boards by
performing static condensation of the stiffness matrix obtained using
the finite element model of the full panel. Buannic et al. [9] used
asymptotic expansion-based analytical method for deriving the
equivalent properties of corrugated panel. Because the ITPS will act
as a thermal barrier for a space vehicle, a thermal analysis is needed to
understand the ITPS’s thermal behavior. There has not been any
research on the thermoelastic behavior and response of corrugated or
truss-core sandwich panels proposed for the ITPS construction.

The objective of the current research was to establish an analytical
procedure that determines the thermoelastic behavior of the ITPS
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Fig. 1 Corrugated-core sandwich panel.

when subjected to realistic reentry temperature distributions. The
analytical models were compared with an expensive and detailed
finite element analysis. The equivalent stiffness parameters of the
ITPS are presented and discussed. The ITPS was subjected to a
realistic reentry temperature and the corresponding thermal force
resultants and moments along with the thermal stresses were derived.
A detailed description of the thermal response of the ITPS was
shown.

II. Geometric Parameters

Consider a simplified geometry of an ITPS unit cell shown in
Fig. 2. The z axis is in the thickness direction of the ITPS panel. The
stiffer longitudinal direction is parallel to the x axis, and y axis is in
the transverse direction. The unit cell consists of two inclined webs
and two thin face sheets. The unit cell is symmetric with respect to
the yz plane. The upper face plate thickness #rg can be different
from the lower plate thickness #1g, as well as the web thickness 7,,.
The unit cell can be identified by six geometric parameters
(p.d, trg, tgg, t,, 0) (Fig. 2). Four other dimensions (b.,d., s, f)
are obtained from geometric considerations. The equations for these
relationships are as follows:

1 1
dc':d_EtTF_EtBF (1a)

1 d,
f_z(p_taHQ) (1b)
b.=p-2f (1c)

s=VB 1=t o b (1d)

sinf cosf

The ratio f/ p = 0 corresponds to a triangular corrugated core, and
f/p = 0.5 corresponds to a rectangular corrugated core.

III. Analysis

The finite element method is commonly used to determine the
response of a sandwich structure. However, the number of nodes and
elements needed to properly model the structure can get excessive; as
aresulta full 3-D finite element analysis is not economical to conduct
a preliminary analysis. Such panels may also be represented as a
thick plate that is continuous, orthotropic, and homogenous, for
which analytical and 2-D finite element method (FEM) solutions [10]
are available.

The computational time and effort in determining stiffness and
thermal behavior of the ITPS is significantly reduced in comparison
with FEM. Analytical models have been proven to be fast, accurate,
and suitable for use in preliminary design. It is advantageous to use an
analytical model for an optimization procedure. An optimization
procedure usually runs about 100 function evaluations per variable,
which if done analytically can take minutes rather than hours if done
completely with FEM. For example, Bapanapalli etal. [11] used 3-D
finite element (FE) analysis of the ITPS in developing response

Fig. 2 Dimensions of the unit cell.
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surfaces for optimization. Each of the FE analyses took approxi-
mately 40 min of wall clock time, whereas the analytical models are
expected to take not more than 2 min per analysis. The analytical
models are able to provide the designer with an accurate description
of the behavior of the ITPS when subjected to realistic reentry
temperatures. The thermal moments and force resultants could cause
the panel to thermally deflect, buckle, and yield. A TPS must be
constrained from deflection to prevent local aerodynamic heating
due to the change in the aerodynamic profile. Local buckling is an
important design driver of an ITPS because of the thin webs and
faces.

The ITPS may be represented as an equivalent thick plate that is
continuous, homogenous, and orthotropic with respect to the x and y
directions. In the derivation of the stiffness parameters the following
assumptions were made:

1) The deformation of the panel is less than 5% when compared
with the panel thickness.

2) The panel dimensions in the y direction are 3—6 times larger than
the unit-cell width 2p.

3) The face sheets are thin with respect to the core thickness.

4) The core contributes to bending stiffness in and about the x axis
but not about the y axis.

5) The face and web plate laminates are symmetric with respect to
their own midplane.

6) The core is sufficiently stiff so that the elastic modulus in the z
direction is assumed to be infinite for the equivalent plate. Local
buckling of the facing plates does not occur and the overall thickness
of the panel is constant.

Previous researchers adopted these assumptions in the derivation
of stiffness parameters of sandwich panels with corrugated core
(Libove and Hubka [12], C core, Fung et. al. [13], and Z core [14].
The in-plane and out-of-plane stiffness governing the elastic
response of a shear-deformable sandwich panel are defined in the
context of laminated plate theory incorporating first-order shear-
deformable plate theory described by Vinson [15] and Whitney [16].
The appropriate stiffness of the orthotropic plate may be obtained by
comparing the behavior of a unit cell of the corrugated-core sandwich
panel with that of an element of the idealized homogeneous
orthotropic plate (Fig. 3).

The in-plane extensional and shear response and out-of-plane
(transverse) shear response of an orthotropic panel are governed by
the following constitutive relation:

N [A] &
Q= [C] {V} or {F}=[K{D} (2
M [D] K

In Eq. (2), € and y are the normal and shear strains, « is the bending
and twisting curvatures, [A], [C], and [D] are the extensional, shear,
and bending stiffness. The orthotropic plate is assumed to be
symmetric.

A. Extensional, Bending, Coupling, and Transverse
Shearing Stiffness

Consider a composite corrugated-core unit cell. The unit cell is
composed of four components (two faces and two webs), each with
its own material properties and ABD matrix; the ABD matrix is
composed of three matrices: A is the extensional stiffness matrix, B is
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Fig. 3 Equivalent orthotropic thick plate for the unit-cell corrugated-
core sandwich panel.

the coupling stiffness matrix, and D is the bending stiffness matrix.
The ABD matrix of each unit-cell component is combined together in
an appropriate manner to create an overall stiffness of the ITPS sand-
wich panel. The analytical procedure of determining the overall
stiftness of the ITPS sandwich panel has been discussed and
determined by Martinez et al. [17]. Here we provide a brief descrip-
tion of the analytical method. The overall stiffness of the unit cell was
determined by imposing unit midplane strains and curvature
(macrodeformation) to the unit cell and then calculating the cor-
responding midplane strains and curvatures (microdeformations) in
each component. The unit-cell components are the two face sheets
and two webs. Transformation matrices that relate the macro and
microdeformations were derived in the form

{D} = [Tp]{D}M (©)

In Eq. (3), Tg) is the deformation transformation matrix that relates
macrodeformations to microdeformation, {D} is the micro-
deformation in each component, and {D}¥ is the macrodeformation
in the unit cell (refer to for the transformation matrix), and e = 1-4,
(1 = top face sheet, 2 = bottom face sheet, 3 = left web, 4 = right
web). Using the transformation matrices, the strain energy of each
component was determined and added to determine the overall unit-
cell strain energy

v =500 [(appTRIasDMG @
0
4
UM = CPRDIYIKIDY =Y U0 s)

From the strain energy we determined the ITPS sandwich panel
stiffness as the sum of the transformed stiffnesses of the components

4
K= Z K© (6)
e=1
where
1 s —
K© = 7/ TOTKETEd5 @)
PJo

The details of the derivation and verification of the method using full-
scale finite element models are described in Martinez et al. [17].

B. Heat Transfer and Temperature Distribution

Thermal analysis of an ITPS involves complex heat transfer
mechanisms in severe transient thermal environments. Pressure,
conduction, radiation, convection, and temperature variation all play
important roles in the thermal performance of an ITPS (Blosser [1]).
The proposed ITPS is a multifunctional structure that possesses
load-bearing capabilities as well as provides insulation for the space
vehicle. During reentry the outer surface of the space vehicle is
exposed to extreme reentry temperatures due to the incoming heat
flux (see Fig. 4). The heat flux causes the ITPS temperature to rise
dramatically, and as a result it causes severe thermal stresses that lead
to excessive thermal deflection and even thermal buckling. Knowing
the response of the ITPS to a change in temperature is a critical need
because panel deflection, buckling (local or global), temperature, and
yielding are all critical functions of an ITPS that influence the design.

Consider an orthotropic unit cell of the ITPS with the following
dimensions: p = 50 mm, d = 100 mm, f1g = 1 mm, gz = 1 mm,
t, =1 mm, 6 =75° subjected to an incident heat flux versus
reentry time of a Space Shuttle-like vehicle (Fig. 4). The corrugated-
core sandwich panel is assumed to be made out of graphite/epoxy
AS/3501, E; = 138 GPa, E;, =9 GPa, G|, = 6.9 GPa, v, = 0.3,
with four laminas in each component and a stacking sequence of
[90/0],. Typically, simplified one-dimensional models (Dorsey
et al. [3]) are used to predict the thermal performance of a
thermal protection system when subjected to realistic temperature
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Fig. 4 Heating profiles for a Shuttle-like vehicle obtained from Dorsey
etal. [3] a) during reentry on vehicle windward centerline, and b) heating
rate used for preliminary analysis.

distributions. A one-dimensional finite element heat transfer
analysis was done by Bapanapalli et al. [11]. The heat transfer
analysis determined the maximum bottom face sheet temperature of
the unit cell and the core temperature distribution at any particular
reentry time. The core temperature distribution is plotted for three
reentry times (450, 1575, and 1905 s) in Fig. 5a. The 1905-s reentry
time corresponds to the time when maximum bottom face sheet
temperature is reached.

Core Temperature Distribution

Each temperature distribution resulted in thermal force resultants
and thermal moments that caused the sandwich structure to linearly
deform. In the case of laminated composites the thermal forces and
moments were computed using Eq. (8)

N7, M7] = / [0} AT[, Jdz ®)

_h
2

In Eq. (8), [Q] is the laminate stiffness matrix, {o} is the column
matrix of the coefficient of thermal expansion and AT is the
temperature change from the reference temperature. However, these
equations do not apply to the present ITPS structure because there are
no layers in the unit cell. Therefore, a micromechanics (homo-
genization) approach was used to determine the unit-cell thermal
forces and moments. Consider the thermoelastic laminate con-

stitutive relation
N &, NT
Bl o

InEq. (9), NT and M are the unit cell’s thermal force resultant and
moment due to a temperature change of the ITPS. The thermal force
resultants and moments are equal to the negative of forces and
moments that act on the unit cell when it is completely constrained at
its lateral boundary surfaces. An analytical procedure for predicting
the ITPS thermal force and moment resultants are presented in this

paper.

C. Thermal Force Resultants and Moments

An analytical method was developed to predict the thermal force
and moment resultants acting on an ITPS sandwich panel from a
given temperature distribution. Consider a unit cell made up of four
composite laminates (two face sheets and two webs). Each laminate
has its respective material properties and stiffness matrix. The unit
cell was subjected to a temperature distribution AT (y) where y was
the local axis of the inclined web starting from the top face.
The temperature distribution equation was determined by fitting a
quartic polynomial to the temperature distribution shown in Fig. 5a.
A reference temperature at which the laminate is stress-free was
assumed to be at room temperature and the temperatures in the faces
were considered to be constant because the faces are thin when
compared with the ITPS core thickness. Because of symmetry only
half the unit cell was analyzed. The half-unit cell was constrained to
prevent displacement in the x and y directions. The top face sheet had
roller support in the z direction, which allowed the webs to expand in
the y direction (Fig. 6a). The thermal problem was broken down into
two problems. The first problem was the constrained problem in
which force resultants that are equal and opposite to the component’s
(face or web) thermal forces were applied to the unit cell. This
behavior is given by
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Fig. 5 a) Core temperature distribution at three reentry times, and b) resulting thermal force resultants and thermal moments.
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The equal and opposite forces prevent any expansion in the half-
unit cell; hence the strains are equal to zero. The average thermal
force resultants were determined for the webs because the tem-
perature distribution had a polynomial variation.

The second problem is an unconstrained half-unit cell with no
temperature distribution, and the forces developed in the constrained
problem, Nﬁ' ), N;z) ,and Nﬁ‘” are relaxed. The relaxed force resultants
are equal and opposite to the force resultants obtained in Eq. (10).
The constraints are represented by the reactions shown in Fig. 6¢. The
constraints are unknown reaction forces that were determined by
Castigliano’s second theorem [18]. The strain energy due to bending
and normal force was considered. The strain energy of each com-
ponent was determined and then summed to obtain the total strain
energy in the half-unit cell. There are seven unknown reactions to be
determined. To determine the seven unknown reactions seven
boundary conditions were imposed, which are that the displacement
and rotations due to each reaction are zero. The seven boundary
conditions along with Castigliano’s second theorem lead to a system
of seven linear equations with seven unknowns

w,
R,

0 i=1,273....7 (11)

Solving Eq. (11) leads to the solution of the seven reaction forces.
By summing the x and y forces in Fig. 6¢ along with the x- and
y-force resultant results from Fig. 6b, the desired thermal force
resultant and moment for an ITPS sandwich panel were obtained.
The relevant equations are given as follows:

N, =R; + Rs + (N} + N?) (12)

d d
M, =Ry + Ry +5 (N = Ny) + 5 (Rg—Ry)  (13)

1
N, = 5(Ni“zp + NP2p + NP2s) (14)

_ld o vo S EAWCPNEAY RS
MX—[Z(N,\. N¢ )2p+;2 g5 N (i) )| 15)

InEq. (15), N is the number of discretization points in the web length.
The force and moments resultants that are needed to constrain the
unit cell during a change in temperature is equal to the negative of the
thermal force resultants and moments of the ITPS as shown in

Egq. (16)

[NT,M™) =[-N,—M] (16)

D. Thermal Stress in the Faces and Webs

The analytical procedure was extended to obtain the thermal
stresses in each component due to a given through-the-thickness
temperature variation. According to classical laminate plate theory,
the equations needed to determine thermal stresses are

o =[0](s — aAT) (17)

To determine the thermal stresses in either the faces or the webs, the
microthermal deformation of each component due to a unit-cell
macrostrain or curvature must be known. The microdeformation
of each component was determined by Eq. (3), which relates macro
to microdeformation. The deformation transformation matrices that
were derived by Martinez et al. [17] were used to determine micro-
strains and curvatures in the faces and webs (see for the trans-
formation deformation matrices).

1. Microthermal Stresses, Constrained Case

The thermal stresses in the faces and webs were derived for an
ITPS unit cell. The first case that was investigated was the con-
strained case where strains in the x and y directions were zero,
however, the webs were free to expand in the web length direction
and constrained in the x direction. The thermal stress equation for the
constrained thermal expansion problem is shown in the following
equation:

1= -1@lteta7(5' 5 %)

Equation (18) is only valid for the top and bottom face sheets because
the faces are fully constrained and the strains are zero. The webs,
however, were not fully constrained and were allowed to expand in
the y direction only. Therefore, an analytical solution for the web
expansion under a fourth-order polynomial temperature distribution
was derived. From Fig. 6a it can be seen that the constrained thermal
problem for the half-unit cell was broken down into two individual
problems. Problem 1 is Fig. 6b and problem 2 is Fig. 6¢c. The web
strains in the y direction for problem one and problem two were
determined and then summed to obtain the total web strain for the
constrained thermal problem, which took into account the web
expansion.

The web strain from problem-2 was obtained by determining the
midplane strains and curvatures in the webs due to the reactions and
relaxed forces (Fig. 7).

By summing the forces and moments in the y direction the
equation that characterizes the force and moment at any location on
the web was determined (refer to for the force and moment equation
on the web). The midplane strain and curvature in the webs were
determined by multiplying the force vector of the web with the
inverse of the web’s stiffness matrix, Eqs. (19) and (20)
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The web strain for problem-1 was determined by first modeling
the free body diagram of the web only from Fig. 6b. The webs are
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Fig. 10 a) Boundary conditions imposed on the plate to prevent rigid
body motion. An arrow pointing at a black dot indicates that the
displacement of that point is fixed in the direction of the arrow.
b) Deformation of the unit cell due to temperature distribution with the
unit cell fully constrained.

constrained by a compressive force from Eq. (10), which was the
average force needed to constrain the web in the web length direction.
However, the average displacement was zero, but the local dis-
placements and local strains were not zero because of the fourth-
order polynomial of the temperature distribution, which causes local
thermal strains. An analytical equation was derived that accounts for
the expansion of the web due to a temperature distribution through
the web length.

Considering only the y direction, which accounts for web length
expansion from Fig. 8, and using the constitutive relation results in
the following equation:

N5 =Ane,, — NAT() @n

where

N= |’ Qudz (22)

)
2

Table 1 Periodic displacement boundary conditions imposed on the lateral faces of unit cell for in-plane strains and curvatures

u(a,y)—  v(a,y)— w(a, y)— u(x, b)— v(x, b)— w(x, b)— O(a,y)—  ba,y)—  bi(x.b)—  O,(x.b)—
u(0,y) v(0,y) w(0,y) u(x,0) v(x,0) w(x,0) 0,(0,y) 6,(0,y) 0,(x,0) 0,(x.0)

as+ a/2yg0t+  —d?/2k,—  b/2yn0+  beg+bzk, —b*/2k,— —a/2k, ak, —bk, b/2k,,
azi, az/2k ay/2k,, bz/2k bx/2k
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Table 2 Non-zero thermal forces in the unit cell due to
thorough thickness temperature distribution

N,,N/m N, N/m M, Nm/m M, Nm/m
Analytical 581.03 317.48 10.97 11.41
Finite element 563.88 316.77 11.48 11.45
% dift. 3.04% 0.22% 4.36% 0.38%
The differential equation of equilibrium for Fig. § is
Y AN,
LN‘«V +—==0 (23)
- ay
Substituting Eq. (21) into Eq. (23) results
- %0 .0 _
Ay —N-AT(y) =0 (24)
dy dy

Integrating Eq. (24) twice with respect to y, the web displacement as a
function of y was obtained
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v(y) = / _—— AT(y) dydy+Dy+ E (25)

Equation (25) has two unknown constants that were solved by
considering two boundary conditions.

50)=0  (s)=0 (26)

Substituting Eq. (25) into Eq. (26) and solving for the system of linear
equations, the unknown constants D and E were determined. Finally,
taking the partial derivative of Eq. (25) with respect to y, the web
midplane strain in the y direction for problem-1 was obtained

—AT()dydy + Dy + E 27
£y,(y) = % 8y[//A228 (y)dydy + y+] 27

Summing the strain obtained from Eqs. (20) and (27) yields the web
strain in the web length direction for the constrained problem with
consideration of web expansion.

2. Thermal Stresses, Unconstrained Case

In this section the stresses in the faces and webs due to the force
resultants obtained from Eqs. (12-15) were determined. Using the
thermal force vector from Eq. (16) and multiplying the result with the
unit-cell stiffness, Eq. (7) yields the thermal strain and curvature for

the unit cell
e \ M _ | —N
fed =wr{ 20} (8)

Equation (28) solves the unit-cell strain and curvature under
thermal loading. Using the result in Eq. (28) along with the
deformation transformation matrix for the faces and the refined web
stress deformation transformation matrix [17], the microdeformation
of the faces and webs was determined, Eq. (3). The micro-
deformations are the local strains and curvature that the faces or the
webs will undergo due to the temperature distribution. The face and
web stresses were determined by multiplying the microdeformation
from Eq. (28) with its respective transformed lamina stiffness matrix

o = (01T K1 | Ny | )
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Fig. 12 Stresses in the x and y directions in the top face, bottom face, and web for the constrained thermal problem. A represents analytical results and F

represents finite element results. The 0 and 90 indicate the ply orientation.
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Fig. 13 Deformation of the unit cell due to the unconstrained boundary
condition.

IV. Results

A. Thermal Force Resultant and Moment

For verification of the effectiveness of the analytical models,
consider a corrugated-core sandwich panel unit cell with the
following dimensions: p =50 mm, d =100 mm, #pz =1 mm,
tgg = | mm, ¢, = 1 mm, and § = 75°. In the example the properties
of the graphite/epoxy composite are assumed to be that of AS/Epoxy
(E, =138 GPa, E, =9 GPa, v, = 0.3, G|, = 6.9 GPa), The web
and the face sheets are assumed to contain four laminas with the
stacking sequence [(0/90),]. The representative volume element or
unit cell used in the homogenization is shown in Fig. 9. A finite
element anaI\l/?/sis was conducted on the unit cell using the commercial
ABAQUS™ finite element program. Eight node shell elements were
used to model the face sheets and the webs. The shell elements have
the capability to include multiple layers of different material
properties and thickness. Three integration points were used through
the thickness of the shell elements. The FEM model consisted of
6666 nodes and 2178 elements.

Known strains and curvatures were imposed on the unit cell. The
force and moment resultants were calculated from the resulting
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stresses after the analysis. Strains were imposed by enforcing
periodic displacement boundary conditions on the unit cell as shown
in Table 1. To prevent rigid body motion and translation, the unit cell
(Fig. 10) was subjected to minimum support constraints. The top and
bottom surfaces were assumed to be free of traction. The faces x = 0
and x = a have identical nodes on each side as well as the other faces
y =0 and y = b. The identical nodes on the opposite faces are
constrained to enforce the periodic boundary conditions. Figure 10
shows the deformations of the unit cell as a result of imposing the
periodic boundary conditions. The strains and curvature in Table 1
are set to zero to prevent expansion of the unit cell in the x and y
direction. The 450 s temperature distribution (Fig. 5a) was imposed
on the FE model. The resulting force and moment resultant needed to
constrain the unit cell when subjected to a temperature distribution
will be equal to the negative of the thermal forces.

The nodal forces of the boundary nodes were determined from the
stress finite element output after the analyses. Then the force and
moment resultants acting on the unit cell were obtained from the
nodal forces using Eq. (30). The resultants obtained are the forces
needed to constrain the unit cell, and they will be equal to the negative
of the thermal forces. The results are shown in Table 2

[N;, M;] = (%) i[l,z]F?'")(a,y,z)
m=1

The finite element results in Table 2 indicate that the maximum
difference between exact thermal forces and those predicted by
Eqgs. (12-15) is less than 5% difference.

(30)

B. Thermal Stress Verification
1. Constrained Case

Consider the same FEM unit cell representative volume element
and mesh from Fig. 9 with the same material properties and cross ply
layup. All strains in the x direction are zero and all strains in the
ydirection are zero for the unit cell (Table 1). The unit cell was
subjected to the 450 s temperature distribution that was illustrated in
Fig. 5a. The web was allowed to expand by the addition of rollers as
shown in Fig. 6a. The strains in the webs were extracted from the
finite element output after analysis. Figure 11 compares the finite
element and analytical results for web strains.
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Fig. 14 Stresses in the x and y directions in the top face (TF), bottom face (BF) and web for the unconstrained thermal problem. A represents analytical
results and F represents finite element results. The 0 and 90 represent the ply orientation.
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The results in Fig. 11 indicate that the analytical procedure
developed to obtain the strain in the y direction, which accounts for
the free expansion of the webs [Eqs. (20) and (27)] yields a less than
2% difference strain result when compared with the FE results,
which yield less than 5% stress results when compared with finite
element results, Fig. 12. Correct strain results are necessary to
obtain accurate stress results.

2. Unconstrained Case

The same FEM model of the representative volume element shown
in Fig. 9 with the same material properties and cross-ply layup was
investigated for this case. For this example, periodic thermal strains
from Eq. (28) were applied to the finite element model. The stress
results from the analytical and finite element analysis were compared
in the x and y directions. The results from Eq. (28) were substituted in
Table 1 and inputted into the FE model to obtain the appropriate
periodic displacement boundary conditions for the unconstrained
thermal problem. Figure 13 illustrates the deformation of the unit
cell after appropriately applying the periodic thermal boundary con-
ditions. The maximum difference in stresses from the analytical and
the finite element methods is within 5%. The results indicate that the
thermal force resultants from Eqs. (12—15) was an efficient and fast
way to determine thermal forces and moments as well as stresses in
the faces or webs (Fig. 14) from an applied unit-cell force resultant or
moment.

g0 | 10 0
Ejo v 0 0

D (e) — T¢4D M ka’” — 0 0 _f(pv d? I1F; IBF, tw? 0)
(D} = Ty{D} o 00 "
Ky 0 0 0
Kzy 0 0 0

The transformation matrix for the right web is

e 1P 1 0 0
E50 v 0 0

DY© — TefpwM Vijo — 0 0 f(P’d’ Itr, IgEs Ly 9)
(D} =T5{D} o 0 ;
Ky 0 0 0
Kz3 0 0 0

V. Conclusions

The truss-core sandwich panel, which is a candidate structure for
ITPS, is homogenized as an equivalent orthotropic plate. Detailed
formulation of the bending, extensional, coupling, and shear
stiffness for an ITPS unit cell was presented. The ITPS will experi-
ence extreme reentry temperatures that will result in thermal
moments and force resultants on the ITPS unit cell. A micro-
mechanics approach was developed to determine unit-cell thermal
forces and moments. The analytical model can be used to determine
thermal forces and moments for the ITPS unit cell, which can lead
to accurate thermal strains and stress. The results between finite
element analysis and the analytical model for the constrained and
unconstrained thermal problem were within 5% of each other, thus
validating the method.

Appendix
The transformation matrix for the top face sheet is

D}V =Tp{D}M

Exo W 1 O 0 % O O Exo (M)
Eyo 01 00 % 0 & yo
Vxyo _ 00 1 00 ‘—21 Yxyo (A 1 )
Ky o 0 01 00 Ky
Ky 00 0 0 1 0 Ky
Ky 00 0 0 0 1 Kxy
The transformation matrix for the bottom face sheet is
{D}® =TH{D}M
e | 1 00 =4 0 07 &0 ™
Eyo 010 0 -4 0 50
)/x}a _ 0 0 1 0 0 — LE] nyo (Az)
Ky 10 0 0 1 0 0 Ky
K, 00 0 O 1 0 Ky
Kyy 00 0 O 0 1 Ky
The transformation matrix for the left web is
(% — ysin6) 0 0 £ | M
v(% — ysinb) 0 0 €0
0 O O )/XV()
’ A3
—cosf 0 0 Ky (A3)
0 —8(p.d, tre, tgp, 1y, 0) 0 Ky
0 0 1 Kyy
L —§sin6) 0 07 ( &0 1™
vk — ysin6) 0 0] &
0 0 0 Yxyo (A4)
—cosf 0 0 Ky
0 g(p~d’ ZTF’ZBF’tuwe) 0 K.V
0 0 1 Kyy

The normal force and moment web equations as a function of y
obtained from Fig. 10 are

N(@) =N — R, cos § — Ry cos 6 (AS)
M(3) = (Ry + Ry)ysinf + R, + Ry (A6)
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