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a b s t r a c t

Most components undergo tests after they are designed and are redesigned if necessary. Tests help
designers find unsafe and overly conservative designs, and redesign can restore safety or increase
performance. In general, the expected changes to the performance and reliability of the design after the
test and redesign are not considered. In this paper, we explore how modeling a future test and redesign
provides a company an opportunity to balance development costs versus performance by simultaneously
designing the design and the post-test redesign rules during the initial design stage. Due to regulations
and tradition, safety margin and safety factor based design is a common practice in industry as opposed
to probabilistic design. In this paper, we show that it is possible to continue to use safety margin based
design, and employ probability solely to select safety margins and redesign criteria. In this study, we find
the optimum safety margins and redesign criterion for an integrated thermal protection system. These
are optimized in order to find a minimum mass design with minimal redesign costs. We observed that
the optimum safety margin and redesign criterion call for an initially conservative design and use the
redesign process to trim excess weight rather than restore safety. This would fit well with regulatory
constraints, since regulations usually impose minimum safety margins.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Traditionally, aerospace structures have been designed deter-
ministically, employing safety margins and safety factors to
protect against failure. After the design stage, most components
undergo tests, whose purpose is to validate the model and catch
unacceptable designs and redesign them. After production, inspec-
tion and manufacturing are done to ensure safety throughout the
life cycle. In contrast, probabilistic design considers uncertainties
to calculate the reliability, which allows the trade-off of cost and
performance.

In recent years, there has been a movement to quantify the
effect of uncertainty reduction measures, such as tests, inspection,
maintenance, and health monitoring, on the safety of a product
over its life cycle. Much work has been completed in the areas of
inspection and maintenance for structures under fatigue [1–4]. A
study reported by Acar et al. [5] investigated the effects of future
tests and redesign on the final distribution of failure stress and
structural design with varying numbers of tests at the coupon,

element, and certification levels. Golden et al. [6] proposed a
method to determine the optimal number of experiments required
to reduce the variance of uncertain variables. Sankararaman et al.
[7] proposed an optimization algorithm of test resource allocation
for multi-level and coupled systems. A method to simultaneously
design a structural component and the corresponding proof test
considering the probability of failure and the probability of failing
the proof test was introduced by Venter and Scotti [8].

Most aerospace components are designed using a computa-
tional modeling technique, such as finite element analysis. We
expect some error, often labeled as epistemic uncertainty (asso-
ciated with lack of knowledge), in the modeled behavior. The true
value of this error is unknown, and thus we consider this lack of
knowledge to lead to an uncertain future. Tests are performed to
reduce the error, thus narrowing the range of possible futures
through the knowledge gained and the correction of unacceptable
futures by redesign.

Previously, Villanueva et al. [9] proposed a method to simulate
these possible futures including test and redesign, and studied the
effect of a single future thermal test followed by redesign on the
initial reliability estimates of an integrated thermal protection
system (ITPS). An ITPS is a structure on a reusable launch vehicle
that simultaneously provides protection from aerodynamic
heating during reentry, while working as a load bearing struc-
ture. Monte Carlo sampling of the assumed computational and
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experimental errors was used to sample future test alternatives, or
the possible outcomes of the future test. Using the future alter-
natives, the methodology included two methods of calibration and
redesign. It was observed that the deterministic approach to
calibration and redesign, which acted to restore the original
(designed) safety margin, led to a greatly reduced probability of
failure after the test and redesign, a reduction that usually is not
quantified. A probabilistic approach was also presented, which
provided a way to more accurately estimate the probability of
failure after the test, while trading off weight against performing
additional tests. Matsumura et al. [10] extended the methodology
to include additional failure modes of the ITPS.

In this paper we use the reliability estimates of [9] as a building
block to show that modeling future redesign provides a company
with the opportunity to trade off development costs (test and
redesign) and performance (mass) by designing the initial design
criteria and the redesign rules. As regulations and tradition drive
companies to use traditional deterministic design with safety mar-
gins and safety factors, we limit ourselves to deterministic design and
redesign processes. The probabilistic approach can be limited to
select safety margins and redesign criteria. This is a two-stage
stochastic optimization problem [11], a type of problem which has
been studied extensively in the area of process planning under
uncertainty [12,13]. Here, in the first stage, a decision is made about
the initial design before the test (i.e., an initial optimum design is
found) and then decisions are taken based on the updated informa-
tion from the test result (i.e., to redesign or not) in the second stage.

This research fits into a class of studies that have identified
measures that are used to engineer safe designs and sought out ways
to find an optimal set of safety policies or practices. Möller and
Hansson [14] provided a review of safety practices (e.g., safety factor,
safety margin, reliability) in engineering and how they increase
safety. Aktas et al. [15] used cost and safety optimization to optimize
load factors and safety indices considering the initial cost of design
and future failure costs based on probability of failure for bridge

specifications. Beck et al. [16] presented a method to optimize partial
safety factors of the design of a steel beam under epistemic
uncertainties in a robust optimization formulation considering costs
of failure. In the same vein, we seek to optimize the design and
redesign rules considering the outcome of a future test.

The following section of the paper will provide a description of
the test problem, the integrated thermal protection system.
Though the methods in this paper are focused on this particular
example, they can be translated to any example problem in which
the uncertainties in the computational model and experiment are
quantifiable and the ranges of acceptable safety margins and safety
factors are given. In Section 3, the process of test and redesign is
described in detail. Section 4 provides a detailed description of the
uncertainties considered in this study, and Section 5 describes how
these uncertainties are used to obtain a distribution of the probability
of failure. In Section 6, the process of simulating the future test and
redesign for a single candidate design is described. An illustrative
example is provided in Section 7.

2. Integrated thermal protection shield description

Fig. 1 shows the ITPS panel that is studied, which is a corru-
gated core sandwich panel concept.

The design consists of a top face sheet and webs made up of
titanium alloy (Ti–6Al–4V), and a bottom face sheet made up of
beryllium. Saffils foam is used as insulation between the webs.
The relevant geometric variables of the ITPS design are also shown
on the unit cell in Fig. 1. These variables are the top face thickness
(tT), bottom face thickness (tB), thickness of the foam (dS), web
thickness (tw), corrugation angle (θ), and length of unit cell (2p).
The mass per unit area is calculated using the below equation:

m¼ ρT tT þρBtBþ
ρwtwdS
p sin θ

ð1Þ

Nomenclature

d design variable
ec computational error
ex experimental error
f(T) probability distribution of the temperature
m mass per unit area, kg/m2

pf probability of failure, %
r random variable
S safety margin
ΔT change in temperature, K
T temperature, K

Subscripts

calc calculated
corr corrected
ini initial
L lower bound
nom nominal
meas measured
re redesign
test test article
true true
U upper bound

Fig. 1. Corrugated core sandwich panel ITPS concept.
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where ρT , ρB, and ρw are the densities of the materials that make
up the top face sheet, bottom face sheet, and web, respectively.
Additional information on the integrated thermal protection
system is provided in Appendix A.

In this study, we consider thermal failure to occur when the
temperature of the bottom face sheet exceeds an allowable
temperature. We assume that tests of the structure will be
conducted to verify the design. Observed data from the test will
be utilized to calibrate errors in analytical calculations.

3. Analysis and post-design test with redesign

It is assumed that an analyst has a computational model by
which to calculate the change in the temperature of the bottom
face sheet of the ITPS, ΔTcalc , for a design described by design
variables d and random variables r. The randomness is due to
variabilities in material properties, manufacturing, and environ-
mental effects. Using ΔTcalc, the calculated temperature is defined
as

Tcalcðd; r; v0Þ ¼ T0ð1�v0ÞþΔTcalcðd; rÞ ð2Þ
where T0 is the initial temperature of the bottom face sheet, which
also has variability represented by v0. Note that Eq. (2) is
formulated in such a way that the magnitude of the variability is
dependent on T0, such that T0ð1�v0Þ ¼ T0�T0v0 as opposed to
defining T0 with variability as T0�v0. T0 itself is a deterministic
value, and we chose this formulation in order to keep it consistent
with the formulation of errors and to prevent v0 from being on the
order of magnitude of the temperature.

The design is obtained via a deterministic optimization pro-
blem which requires that the calculated temperature be less than
or equal to some deterministic allowable temperature Tdetallow by a
safety margin Sini as shown in Eq. (3). Traditionally, the value of
this safety margin is determined by regulations and past experi-
ence:

min
d ¼ ftw ;tB ;dSg

mðdÞ ð3Þ

subject to T0þΔTcalcðd; rnomÞþSinirTdet
allow

tw;Lrtwrtw;U

tB;LrtBrtB;U
dS;LrdSrdS;U ð4Þ

Note that for the deterministic design, the random variables are
held at the nominal value rnom and the variability in the initial
temperature is zero. The subscripts L and U on the design variables
represent the lower and upper bounds, respectively. The solution
of the optimization problem is denoted as dn

ini.
After the design stage, a test is conducted to verify the chosen

design. The test is performed on a test article described by dtest
(possibly slightly different than dn

ini due to manufacturing toler-
ances) and rtest,1 and an experimentally measured change in
temperature, ΔTmeas, is found. For this test design, ΔTcalcðdtest ;
rtestÞ and Tcalcðdtest ; rtestÞ are also calculated.

As a means of calibration, the experimentally measured and
calculated temperatures can be used in the form of a correction
factor θ for the computational model. That is, the corrected
calculated temperature is given as

Tcalc;corrðd; r; v0Þ ¼ T0ð1�v0ÞþθΔTcalcðd; rÞ

where θ¼ ΔTmeas

ΔTcalcðdtest ;rtest Þ
ð5Þ

Note that this results in an updated distribution of the corrected-
calculated temperature.

Should the test result show that a design is unacceptable,
redesign occurs. The criterion for redesign is based on the safety
margin of the corrected calculated temperature of the original
design. The lower and upper limits of the safety margin of the
corrected temperature are represented with SL and SU, respec-
tively. This is expressed as

Redesign if : Scorr ¼ Tdet
allow�ðT0þθΔTcalcðdn

ini; rnomÞÞoSL
or Scorr ¼ Tdet

allow�ðT0þθΔTcalcðdn

ini; rnomÞÞ4SU ð6Þ
Deterministic redesign is performed so that the corrected
calculated temperature of the redesign (with the correction
factor) is less than or equal to the allowable temperature by a
safety margin Sre. This safety margin Sre does not necessarily
need to be equal to the initial safety margin Sini. Since more
information is gained from the test, the designer may choose to
design to save weight by reducing the safety margin. This can
be formulated into an optimization problem to minimize the
mass given a constraint on the corrected calculated tempera-
ture of the new redesign, where the design variables are the
geometry

min
d ¼ ftw ;tB ;dSg

mðdÞsubject to T0þθΔTcalcðd; rnomÞreþSrerTdet
allow

tw;Lrtwrtw;U

tB;LrtBrtB;U
dS;LrdSrdS;U ð7Þ

The optimum updated design is denoted dn

upd.

4. Uncertainty definition

Oberkampf et al. [17] provided an analysis of different sources
of uncertainty in engineering modeling and simulation, which was
simplified by Acar et al. [5]. We use classification similar to Acar's
to categorize types of uncertainty as errors (uncertainties that
apply equally to every ITPS) or variability (uncertainties that vary
in each individual ITPS). We further describe errors as epistemic
and variability as aleatory. As described by Rao et al. [18], the
separation of the uncertainty into aleatory and epistemic uncer-
tainties allows more understanding of what is needed to reduce
the uncertainty (i.e., using tests to gain more knowledge thereby
reducing the error), and trade off the value of the information
needed to reduce the uncertainty against the cost of the reduction
of the uncertainty.

Variability is modeled as random uncertainties that can be
modeled probabilistically. We simulate the variability through
a Monte Carlo simulation (MCS) that generates values of
the random variables r based on an estimated distribution
and calculates the change in bottom face sheet temperature
ΔTcalc. In addition, we sample the variability v0 in the initial
temperature. This forms the temperature Tcalc for each sample,
generating the probability distribution function. The calculated
temperature distribution that reflects the random variability is
denoted fcalc(T). Additionally, we have variability in the allow-
able temperature Tallow.

In contrast to variability, errors are fixed for a given ITPS and
the true values are largely unknown, so they can be modeled
probabilistically as well. We have classified two sources of error,
which are described in Table 1.

In estimating the temperature of a design, the error must also
be considered. As previously described, the calculated temperature
distribution fcalc(T) of the design reflects random variability. If the
true value of the computational error is known, then the true
temperature distribution, ftrue(T), associated with fcalc(T) is known,

1 It is assumed that the test article design is accurately measured such that
both dtest and rtest are known, and there is no variability in the initial temperature.
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as shown in Fig. 2(a). The true temperature still has randomness
due to the variabilities.

Since the error is unknown and modeled probabilistically, we
instead sample the computational error to create several possible
distributions of the true temperature distributions, f iPtrueðTÞ corre-
sponding to the i th sample of ec. This sampling is illustrated in
Fig. 2(b) for 4 samples of ec. Using the allowable temperature
distribution, the probability of failure can be calculated for each
sample of the computational error. This forms a distribution
of the probability of failure, which is further described in the next
section.

5. Distribution of the probability of failure

The true temperature for a design described by geometric
design variables d and random variables r can be defined as

Ttrueðd; r; v0Þ ¼ T0ð1�v0Þþð1�ec;trueÞΔTcalcðd; rÞ ð8Þ
The limit state for the probability of failure takes into account

the variability in the allowable temperature2 along with the
distribution of the true temperature. The limit state equation is

formulated as the difference between a capacity C and response R
as shown in the below equation:

gtrue ¼ Tallow�Ttrueðd; r; v0Þ ¼ C�R ð9Þ
Using the limit state equation, the probability of failure is

calculated using Separable Monte Carlo [19]. The probability of
failure pf is calculated with Eq. (10), where M and N are the
number of capacity and response samples, respectively. The
indicator function I is 1 if the g is less than zero and 0 otherwise

pf ¼
1

MN
∑
N

i ¼ 1
∑
M

j ¼ 1
I½gtrueðCj;RiÞo0� ð10Þ

As described in the previous section, a distribution of the
probability of failure can be formed by sampling the computa-
tional error for ec;true and calculating the probability of failure
for each sample. Therefore, for n samples of ec;true there are n
probability distributions ftrue(T) from which we can calculate n pf
values. Recall that each sample represents a possible future for the
design. From these n values, we can calculate the mean and 95th
percentile of the probability of failure. The following section will
describe this process of sampling the errors to simulate the future
alternatives.

6. Simulating future processes at the design stage

Monte Carlo sampling of the true values of the computational
and experimental errors from the assumed error distributions is
used to simulate the future test and redesign alternatives for the
initial optimum design dn

ini. The steps to simulate a single alter-
native of the future test with possible redesign are listed below:

1. Sample set of errors ec and ex from assumed distributions (from
this, the “before redesign” probability of failure using the ec
sample can be calculated).

2. Use the true ec and ex samples to simulate a test result and
correction factor θ (Eq. (5) with further details in Appendix B).

3. Apply the correction factor based on the test result to ΔTcalc

(Eq. (5)).
4. Calculate the safety margin with the corrected temperature and

evaluate if redesign is necessary based on SL and SU (Eq. (6)),
then redesign, if necessary (Eq. (7)).

5. If redesign took place, calculate the mass and probability of
failure for this alternative.

To simulate another alternative future, the true errors are re-
sampled and the process is repeated. For n possible future
alternatives, we sample n sets of the errors, and obtain n true
probabilities of failure and up to n updated designs (with n mass
values). With these n values, we can calculate the mean and 95th
percentile of the probability of failure and mass. In how many
futures we will need to redesign is determined by the window
defined by SL, SU. If a redesign is needed, the updated design will
be determined by the choice of safety margin Sre required in
redesign. Fig. 3 illustrates how the distribution of Tcalc;corr , prob-
ability of failure, and mass changes with redesign for a given Sini,
Sre, SL, and SU for n alternative futures.

If the choice of the safety margin and redesign window leads to
k redesigns, the probability of redesign pre is

pre ¼
k
n
� 100% ð11Þ

Fig. 4 displays the above process, and the calculation of the
mean mass, mean probability of failure, and 95th percentile of the
probability of failure of a candidate design, for n alternative
futures.

Table 1
Description of errors.

Symbol Description

ec Computational error due to modeling
of the temperature change ΔTcalc

ex Experimental error in measuring ΔTmeas

Fig. 2. Example illustrating (a) known calculated and allowable temperature
distributions and unknown true distribution, (b) 4 possible true temperature
distributions obtained by sampling of 4 values of ec.

2 The absence of the superscript “det” for Tallow denotes the allowable
temperature with variability to distinguish it from the deterministic allowable
temperature Tdetallow.
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In this figure, a test is performed from which the correction
factor θ is obtained. The corrected safety margin is then used to
determine if redesign should be performed based on the redesign
criterion. If redesign is required, then the design given the rede-
sign safety margin is found, and the mass and probability of failure
are calculated. Otherwise, the original mass of the design and
probability of failure is calculated. After this is repeated for the n
alternatives (i.e., n θ values), the mean mass, mean probability of
failure, and 95th percentile of the probability of failure can be
calculated.

7. Optimization of the safety margins and redesign criterion

7.1. Problem description

The process shown in Fig. 4 can be thought of as the process
that is used by a designer in the design of an ITPS with a given set
of safety margins (Sini and Sre) and redesign criterion (SL and SU),
leading to a distribution of the future mass and probability of
failure. In this section, we explore how a company may use the
probability of failure with future redesign to choose the safety
margins and redesign criterion to minimize mass and probability
of redesign. To do this, we formulate an optimization problem that
minimizes the mean mass μm and probability of redesign pre
subject to constraints on the future mean probability of failure
μpf

, and the 95th percentile of the probability of failure P95ðpf Þ.
The design variables are the safety margins and redesign criterion.
The formulation is shown in the below equation:

min
Sini ;SL ;SU ;Sre

μm; pre

subject to ðμpf
ÞBefore Redesignr0:1%

ðP95ðpf ÞÞBefore Redesignr0:5%

ðμpf
ÞAfter Redesignr0:01%

ðP95ðpf ÞÞAfter Redesignr0:05%

35rSini; Srer65

Sini�35rSLrSini
SinirSUrSiniþ35

1:24 mmrtwr1:77 mm

4:94 mmrtBr7:06 mm

49:9 mmrdSr71:3 mm ð12Þ
The constraints on Sini and Sre restrict the two values to be

within the window of 35–65 K, and they are not constrained to
have equal values. The lower limit is intended to reflect a
regulatory mandate, but, just in case, bounds on the before
redesign probability of failure are present to prevent designs that
are largely unsafe before redesign. The constraints on SL and SU

Fig. 3. Illustrative example of before and after redesign distributions of (a) and (b) Tcalc;corr , (c) and (d) probability of failure, and (e) and (f) mass for n alternative futures for a
given Sini, Sre, SL, and SU.

Fig. 4. Flowchart of the process to calculate the mean mass, mean probability of
failure, and 95th percentile of the probability of failure for a candidate design that
satisfies the problem in Eq. (11) for n future alternatives. Note that the design
variables are underlined to show their position in the process.
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restrict the acceptable values of the safety margin after correction
to within 35 K of Sini. Note that in this paper the design and
redesign policy is optimized on the basis of a single panel. If an
optimization like that is carried out in practice, we assume that
compromise values will be used based on similar optimizations for
several cases. For this problem, the computational and experi-
mental errors were distributed as described in Table 2. We have
made the assumption that the engineer has some prior experience
and history with similar models that allow him or her to make an
estimate of the error distributions. Clearly, this estimate will not
be accurate, but we assume that the estimated distribution of
errors is conservative. The engineer may also be able to evaluate
more accurate but costly higher fidelity models at certain design
points for the purpose of estimating the error bounds. Given the
distributions of the errors, the correction factor θ ranged from 0.85
to 1.15. The distributions of the variables with uncertainty due to
variability are provided in Appendix A.

In this work, the computational model was a finite element
model built in Abaqus for which transient analysis was used to
determine the change in the maximum bottom face sheet tem-
perature. However, coupling the time consuming transient analy-
sis with the Monte Carlo simulations needed to obtain
probabilities of failure over alternative futures was not tractable.
Therefore, Abaqus simulations were fitted with quadratic response
surfaces, originally described in [20]. The simulations were per-
formed at a set of points determined by Latin Hypercube sampling
of 180 designs. A quadratic response surface of 15 variables of the
change in maximum bottom face sheet temperature was devel-
oped. The reader is referred to Appendix A for further details on
the creation of the surrogate for the computational model.

To further reduce the computational cost of simulating a future
test, surrogates of the mass and reliability index were developed.
The reliability index β is related to the probability of failure by
pf ¼Φð�βÞ, where Φ is the standard normal cumulative density
function. For example, for a probability of failure of 0.1%, the
reliability index is 3.72. For the points that were used to form the
surrogate of the reliability index, Separable Monte Carlo (SMC)
was used to calculate the probability of failure. The accuracy of the
Separable Monte Carlo prediction of probability of failure was
estimated by bootstrapping. In this work, 10,000 samples of the
response and capacity were used. To estimate the standard
deviation, the response and capacity were separately sampled
with replacement to have 10,000 samples of response and capa-
city, and the probability of failure was calculated. The number of
bootstrap repetitions was 1000. For this work, we desired a
coefficient of variation less than or equal to 0.1. For 10,000
samples, we determined that for a design with a probability of
failure of 1e�3, which is on the order of probabilities of failure
examined in this study, the standard deviation was 1e�4 for a
coefficient of variation of 0.1. The development of these surrogates
is described in Appendix C.

The problem in Eq. (11) was solved by forming a cloud of
10,000 points using Latin Hypercube sampling of the design
variables Sini, SL, SU, and Sre. For each set of design variables,
10,000 alternative futures were sampled to obtain the probability
of redesign and distributions of the mass and probability of failure.
The selection of n¼10,000 was chosen in order to have a
coefficient of variation of the probability of redesign less than or

equal to 0.1 for a probability of redesign of 1% as probability of
redesign ranged from 1% to 50%. The coefficient of variation was
estimated by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�preÞ=pren

p
. For n¼10,000, the coefficient of

variation for pre ¼ 0:01 was 0.0995 for a standard deviation of
9.95e�4.

7.2. Results

As a point of comparison, we first found the optimum design
for minimum mass that satisfied the “before redesign” constraints
on the probability of failure. Since redesign was not performed, the
only value of interest is Sini. The minimum value of Sini ¼ 48:9 K
which satisfied the probability constraints of a mean of 0.1% and
95th percentile of 0.5% led to a mass of 24.7 kg/m2. In addition, we
found the minimum Sini design that satisfied the “after redesign”
probability of failure constraints without actually performing
redesign (i.e., the minimum Sini that satisfied μpf

r0:01% and
P95ðpf Þr0:05% without any redesign). In this case, the minimum
Sini was 62.5 K for a mass of 25.3 kg/m3 for μpf

¼ 0:01% and
P95ðpf Þ ¼ 0:05%. Plots of the probability density of the safety
margin after correction (i.e., Scorr ¼ Tallow�Tcalc;corr) for the
Sini ¼ 48:9 K and Sini ¼ 62:5 K cases are shown in Fig. 5.

Fig. 5 shows the distribution of the corrected safety margins
with the two values of Sini. The figure also shows the value of S
needed to achieve the desired probabilities of failure (Sini ¼ 29:7 K
for μpf

¼ 0:1% in Fig. 5(a) and Sini ¼ 41:3 K for μpf
¼ 0:01% in Fig. 5

(b)) in the absence of epistemic uncertainty. We observed that 79%
of Scorr values were greater than 29.7 K for Sini ¼ 48:9 K and 84%

Table 2
Bounds of computational and experimental errors.

Error Distribution Bounds

ec Uniform 70.12
ex Uniform 70.03
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Fig. 5. Probability density function of the safety margin after correction for
(a) Sini ¼ 48:9 K which also displays the Sini required in the absence of epistemic
uncertainty for a mass of 23:9 kg=m2 and (b) Sini ¼ 62:5 K which also displays
the Sini required in the absence of epistemic uncertainty for a mass of 24:3 kg=m2.
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greater than 62.5 K for Sini ¼ 41:3 K. This was because the mean
probability of failure was influenced disproportionately by a few
large values as the median probability of failure before redesign
was 7.3e�4% for Sini ¼ 48:9 K and 3.2e�6% for Sini ¼ 62:5 K. The
figure caption also notes that the mass required to achieve the
desired probability of failure in the absence of epistemic uncer-
tainties was 23.9 kg/m2 for 0.1% and 24.3 kg/m2 for 0.01%. With the
epistemic uncertainty, we required 25.3 kg/m2 to compensate for
the computational error, and this 1 kg/m2 or 4% penalty was what
can be reduced by more accurate computation or tests.

Allowing redesign, the Pareto front for minimum probability of
redesign and mean mass after redesign is displayed in Fig. 6 that
satisfies the constraints of the problem in Eq. (11). We observed
reductions in mean mass with increasing probabilities of redesign.
The mean mass values after redesign at these points were less
than the minimum mass of 25.3 kg/m3 obtained when redesign
was not allowed. At 40% probability of redesign, the mean mass
was even less than 24.7 kg/m3, the mass of the optimum design
that satisfied the relaxed “before redesign” constraints on prob-
ability of failure (μpf

r0:1% and P95ðpf Þr0:5%).
The values of the safety margins for the designs on the Pareto

front are displayed in Fig. 7. We observed that the initial safety
margin Sini was nearly constant at approximately 63 K. The lower
bound of the acceptable safety margin with correction SL remained
between 28 and 32 K, for which the difference from Sini is near the
upper bound of 35 K (i.e., the constraint on the lower bound of SL is
active or nearly active). This resulted in the small probability of
redesign of unconservative designs. In Fig. 8, which shows the
percentage of the total probability of redesign that is conservative
and unconservative, we observed that this was indeed the case,
and that less than 5% of the total probability of redesign was
attributed to unconservative redesign for all points on the Pareto
front.

For the upper bound on acceptable safety margin with correc-
tion SU, we observed that the values were large (nearly 100 K) but
gradually reduced to values near Sini at 65 K. This led to the gradual
increase in probability of conservative redesign as the probability
of unconservative redesign remained at low values. Thus, the
probability of conservative redesign comprised the majority of
the total probability of redesign for the designs on the Pareto front.
At the same time, we observed that the safety margin Sre of the
redesign was set to values below Sini and at values less than the
minimum value without tests and redesign of 63.5 K. That is, after
the test, the redesign has a smaller safety margin than possible for
the original design. This value is even less than the safety margin
required to satisfy the relaxed before redesign constraints of
Sini ¼ 48:9 K. The combined effect of redesigning conservative

designs for a reduced safety margin was a reduction in the mean
mass while satisfying more stringent constraints on the probabil-
ity of failure.

The results show that the optimal choice safety margins and
redesign criterion can be chosen based on the probability of failure
that accounts for future redesign. We observe that companies can
benefit by having designers consider conservative safety margins
for the initial design, which correspond to the safety margin
required to satisfy the probabilistic constraints. The redesign
criterion should then mostly result in the redesign of overly
conservative designs to trim mass by allowing a smaller safety
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margin for redesign (because of additional knowledge due to the
test in the correction factor), with a few unsafe designs redesigned
for safety.

7.3. Unconservative initial design approach

While the Pareto optimal designs showed that the initial design
should be conservative with redesign performed to trim mass, we
examined the trade-off in probability of redesign and mass when
starting with an initially unconservative design (i.e., an initial

design that does not satisfy the constraints of pf). In this approach,
the designer uses a smaller safety margin to achieve a minimal
weight design, relying on the test and redesign to correct any
dangerous designs. In this problem, the initial safety margin was
fixed at 48.9 K (corresponding to a mass of 24.7 kg/m2) and the
remaining safety margins (Sre, SL, and SU) were the design
variables. The same constraints as in Eq. (12) were used. Fig. 9
displays the Pareto front found with the unconservative approach,
and compares the result to the previously found results that used a
conservative-first approach found in Section 7.2.

It was observed that to meet the probability of failure require-
ments, the probability of redesign was at least 27% for the
unconservative approach with Sini ¼ 48:9 K. That is, the designer
must accept at least a 27% probability of redesign, which would
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lead to a mean mass of approximately 25.2 kg/m2. This value of the
mass is only 0.4% smaller than the initial mass required to satisfy
the probability constraints without redesign with the initially
conservative design.

Fig. 10 displays the values of the design variables of the Pareto
optimal solutions, and Fig. 11 displays the breakdown of the total
probability of redesign due to conservative and unconservative
designs. It was observed that redesign was primarily performed to
increase safety at the smallest probabilities of redesign (27%),
increasing the redesign of conservative designs with increasing
probability of redesign.

The histogram of the mass for 10,000 alternative futures after
redesign is displayed in Fig. 12(a). The approximately 2% increase
in the mean mass after redesign is attributed to the large
probabilities of failure associated with redesign of unconservative
designs. A breakdown of the alternative futures that resulted in
the mean mass is shown in Table 3. It was observed that the
redesign of unconservative designs resulted in an increase of 8% in
the mean mass.

In contrast, the same mean mass of 25.2 kg/m2 after redesign
can be achieved with the conservative-first approach with a
probability of redesign around 8%, and for a probability of redesign
of 27%, the mean mass is nearly 24.7 kg/m2. In this case, the
reduction in mean mass is due to large reductions in mass in the
cases that required redesign of conservative designs. The histo-
gram of the mass for 10,000 alternative futures is shown in
Fig. 12(b) and the mass and probability of redesign are detailed
in Table 3. It was observed that the redesign of overly conservative
designs resulted in a 10% reduction in the mean mass. Comparing
this value along with the 8% increase in mass seen in the initially

unconservative case, we observed that the change in mass due to
redesign is much larger than the 2% difference in mass of the two
initial designs. However, with the initially conservative design
most redesigns act to reduce the mass, whereas the mass is mostly
increased in the initially unconservative redesign cases. Therefore,
the designer has a choice:

1. use a smaller initial safety margin for an initially small mass
and accept a 27% probability of redesign that will increase the
mass, or

2. use a larger initial safety margin for an initially larger mass that
can achieve less than or equal to the same mass with prob-
abilities of redesign greater than 8%.

If the test shows that the component does not have to be
redesigned, there would be a nearly 2% mass penalty in using
the conservative safety margin.

7.4. Effect of excessively conservative computational error estimates

We also studied the effect of an excessively conservative
computational error estimate. To do so, we set the distribution
of ec to be actually between 70.06 when we have estimated the
error as between 70.12 and simulated 10,000 alternative futures
with the smaller error for the points on the Pareto front for 70.12.

We first examined the penalty on the mass when overestimat-
ing the error as shown in Fig. 13. It was observed that, other than
at very small probabilities of redesign, the mean mass was greater
than predicted. Recall that the mass reduction with increasing
redesign was due to redesign of mostly overly conservative designs
to reduce the mass, and with smaller errors there is smaller gain
from redesign. We compared the predicted and actual values of
the probability of redesign and reduction in mass for four points
on the Pareto front in Table 4. It was observed that the positive

Table 3
Breakdown of alternative futures for the unconservative initial design with 27%
probability of redesign and conservative initial design with 8% probability of
redesign.

Outcome pre (%) Mean mass (kg/m2)

Initially unconservative
No redesign 73 24.7
Unconservative 25.5 26.8
Conservative 1.5 23.5
Total 25.2a

Initially conservative
No redesign 93.5 25.3
Unconservative 2.1 25.8
Conservative 4.4 22.7
Total 25.2a

a Calculated as pnoredesignm0þðpreμmÞconservativeþðpreμmÞunconservative .
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Table 4
Comparison of predicted and actual probability of redesign and mass reduction for
points on Pareto front when ec is estimated between 70.12 when it is actually
between 70.06.

Point pre (%) μm reduction (kg/m2)

Predicted Actual Predicted Actual

A 20 0.3 0.51 0.09
B 30 6.1 0.65 0.19
C 40 22 0.80 0.49
D 50 40 0.88 0.72

5 10 15 20 25 30 35 40 45 50
24.4

24.6

24.8

25

25.2

25.4

pre, %

µ m
, k

g/
m

2

Fig. 14. Comparing the points on the Pareto optima front for ec between 70.06.

D. Villanueva et al. / Reliability Engineering and System Safety 124 (2014) 56–6764



aspect of the overly conservative error estimate was a smaller risk
of redesign, but at the cost of a decreased mass reduction.

Next, we compared the Pareto front for ec between 70.12 to
the Pareto front found when it is instead between 70.06. This
Pareto front was found in the same way as the Pareto front for ec
between 70.12 as described in Section 7.1. The comparison of the
Pareto fronts is shown in Fig. 14. We observed that the difference
between the two Pareto fronts was larger at smaller probabilities
of redesign, with the difference gradually reducing with increasing
probability of redesign. With a smaller computational error, the
designer is able to reduce the mass of the design and, as before,
use redesign of conservative designs to further reduce the mass.

Such a study that compares the effect of a smaller computa-
tional error distribution is useful to decide if measures should be
taken to more accurately quantify the computational error or
improve the model by increasing the fidelity, for example. The
smaller mass for the case with the smaller error over the original
Pareto front is a measure of the opportunity loss in not providing a
better error estimate. For example, consider Point A in Fig. 13,
where the designer expected to reduce the mass from 25.4 kg/m2

to 24.9 kg/m2 by tolerating a 20% probability of redesign. Fig. 13
and Table 4 show that instead the actual mass was 25.3 kg/m2

with only a 0.3% probability of redesign. Fig. 14 shows that if the
actual smaller error bounds were known, for the same 0.3%
probability of redesign, the obtained mass after redesign would
have been 24.87 kg/m2. Such results are useful in providing an
incentive to better estimate or reduce the computational error. For
the opposite case, when the computational error is actually larger
than estimated (e.g., if the true ec was larger than 70.12 when we
have estimated it as between those bounds), we expect that the
test will catch such a scenario and the model itself would be
significantly revised.

7.5. Discussion

Using the minimal safety margin for the initial design can be
thought of as using safety margins given by regulatory agencies,
which provide minimum values of safety margins and safety
factors. For example, the Federal Aviation Administration has
recommended minimum design and test factors for structures
on reusable launch vehicles [21]. In this paper, the values of Sini
(and Sre) of 35 K may be the minimum value imposed by an
agency, and the value of 48.9 K may be the current minimum value
imposed by a company based on history or experience. The results
presented in the paper show that a company may have an
incentive to impose their own safety margins, and set the design
and redesign rules to balance development costs. The results in
Section 7.2 showed that probabilistic constraints can be satisfied
by first using a conservative safety margin and accepting a risk of
increased development cost through increased redesign to trim
excess mass. This directly contrasts the approach of using minimal
safety margin values and redesigning based on the test result to
increase safety. Considering the possible future redesign and its
cost allows the company to make better decisions at the design
stage.

8. Concluding remarks and future work

In this paper, we used the modeling of future redesign to
provide a way of balancing development costs (test and redesign
costs) and performance (mass) by designing the design and rede-
sign rules. We observed that the presence of epistemic uncertainty
led to a mass penalty, which could be reduced by a test and
redesign. Since deterministic design employing safety margins and
safety factors is common practice in industry, we showed that

safety margins and redesign criteria can be chosen using the
probability of failure with future redesign. A study on an inte-
grated thermal protection system showed that a minimum mass
design that satisfied probabilistic constraints can be achieved by
having an initially conservative design and a redesign criterion
such that redesign is mainly performed on overly conservative
designs to trim excess mass. In contrast, we examined the trade-
off in starting with an initially small safety margin, which may be a
minimum value recommended by a regulatory agency, and using
the test and redesign to correct dangerous designs. Therefore, in
this example, a company would have an incentive to use con-
servative safety margins at the initial design stage, while increas-
ing performance by implementing a redesign criterion aimed at
discovering overly conservative designs. This also provides a
balance between probabilistic design and the more traditional
deterministic approach.

Additionally, this research addresses handling the cost of
evaluating the response of the ITPS by creating accurate surrogates
of the system response. The same approach is applicable to other
complex systems as long as the number of design variables is not
too high.

Future work includes considering the uncertainty reduction
methods that often take place after a component is designed but
before a component is tested. For example, lower fidelity methods
may be used to find a starting point for the initial design. Before a
design is tested, it may be better characterized through higher
fidelity modeling or optimization in a smaller design space about
this design. Both the higher fidelity modeling and re-optimization
can reduce the uncertainty in the design before a test is even
performed. Therefore, a study that models these actions and
considers the subsequent uncertainty reduction would be useful
in finding the optimal balance in design and development costs
and performance. Additional future work includes incorporating
the “buffered probability of failure” as a reliability measure as a
robust substitute for probability of failure, as explained by Rock-
afellar and Royset [22].
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Appendix A. Integrated thermal protection system

Thermal analysis of the integrated thermal protection system is
done using 1-D heat transfer equations on a model of the unit cell.
The heat flux incident on the top face sheet of the panel is highly
dependent on the vehicle shape as well as the vehicle's trajectory.
As in previous studies reported by Bapanapalli [23] (Chapter 3,
pp. 49–61), incident heat flux on a Space Shuttle-like vehicle was
used. A large portion of the heat is radiated out to the ambient by
the top face sheet, and the remaining portion is conducted into the
ITPS. We consider the worst-case scenario where the bottom face
sheet cannot dissipate heat by assuming the bottom face sheet is
perfectly insulated. Also, there is no lateral heat flow out of the
unit cell, so that heat flux on the unit cell is absorbed by that unit
cell only. For a more in-depth description of the model and
boundary conditions, the reader is referred to the Bapanapalli
reference.
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The random variables used in this paper are described in Table
A1 (Table A2).

A surrogate of the maximum bottom face sheet temperature
was originally constructed in [20]. The surrogate was a function of
the first 15 variables in Table A1: 6 variables relating to the ITPS
geometry and the remaining 9 as density, thermal conductivity,
and specific heat of all three materials (titanium, beryllium, and
insulation foam). A quadratic response surface was fitted to 180
training points from Latin Hypercube Sampling. Though a typical
rule of thumb for the number of training points for a quadratic
response surface is twice the number of coefficients (here, 136
coefficients), the number of training points was sufficient as
evidenced by the goodness-of-fit statistics shown in Table A3.
Note that the PRESSRMS, found by leave-one-out cross-validation,
and the eRMS are reported as a percentage of the average value of
the output of the training points. Due to the R2 value near 1 and
the small (o1%) errors, the quadratic response surface was
deemed an acceptably accurate surrogate.

Appendix B. Simulating a test result and correction factor θ

As described in Section 3, a test is performed to verify a design,
and the test is performed on a test article denoted by dtest and rtest

to find the experimentally measured temperature ΔTmeas. For this
design, we can calculate ΔTcalcðdtest ; rtestÞ. We can relate both the
measured and calculated temperatures to the true temperature of
the test article by the true experimental and computational errors
as

Ttest;true ¼ T0þΔTmeasðdtest ; rtestÞð1�ex;trueÞ
¼ T0þΔTcalcðdtest ; rtestÞð1�ec;trueÞ ðB:1Þ

Rearranging this equation, we arrive at the correction factor
θ¼ ð1�ec;trueÞ=ð1�ex;trueÞ.

Appendix C. Surrogates for mass and probability of failure

In this section, it is shown that the mass before and after
redesign can be found using a surrogate that is a function of safety
margin and difference between the allowable temperature Tallow
and initial temperature T0. A surrogate of the probability of failure
that is a function of the same two variables and the computational
error ec can be made as well.

As shown in Eq. (3), the initial design satisfies

T0þΔTcalcðd; rÞþS1 ¼ Tallow ðC:1Þ
Rearranged so that ΔTcalcðd; rÞ is on the left hand side, this
becomes

ΔTcalcðd; rÞ ¼ ðTallow�T0Þ�S1 ðC:2Þ
By Eq. (7) the redesign should satisfy

T0þθΔTcalcðd; rÞþS4 ¼ Tallow ðC:3Þ
which is rearranged so that ΔTcalcðd; rÞ is on the left hand side

ΔTcalcðd; rÞ ¼ ðTallow�T0Þ=θ�S4=θ ðC:4Þ
By Eqs. (C.2) and (C.4), the two are equivalent if ðTallow�T0Þ ¼

½ðTallow�T0Þ=θ�afterredesign and S1 ¼ S4=θ. Therefore, ΔTcalc , along
with its corresponding mass and probability of failure, is a function
of ðTallow�T0Þ and S, where the values with and without redesign
are related through θ. This allows the mass to be calculated simply
using surrogates with the inputs ðTallow�T0Þ and S. A surrogate to
obtain the probability of failure can also be obtained by including
the computational error ec as an input.

Note thatΔTcalcðd; rÞ does not need to be calculated because, for
a given ðTallow�T0Þ and S1, we can find ΔTcalcðd; rÞ by
ðTallow�T0Þ�S1 ¼ΔTcalcðd; rÞ ðC:5Þ
When the correction is applied, then we evaluate if redesign is
necessary by

Redesign if : ðTallow�T0Þ�θ½ðTallow�T0Þ�S1�rS2
or ðTallow�T0Þ�θ½ðTallow�T0Þ�S1�ZS3 ðC:6Þ

which simplifies to

Redesign if : ðTallow�T0Þð1�θÞþθS1rS2
or ðTallow�T0Þð1�θÞþθS1ZS3 ðC:7Þ
Kriging surrogates (quadratic trend function with a Gaussian

correlation model) were used for the surrogates of the mass and
reliability index. The accuracy of the surrogates was measured by
the PRESSRMS, a leave-one-out cross validation error measure, and
the eRMS at 50 test points. A summary of the surrogates is provided
in Table C1.

Appendix D. Effect of additional uncertainties

Recall that in this paper the probability of failure is calculated
with the limit state g as

gtrue ¼ Tallow�Ttrueðd; r; v0Þ ðD:1Þ

Table A1
ITPS random variables.

Variable Distribution Nominal CV or s

Web thickness Uniform – CV¼3%
Bottom face sheet Uniform – CV¼3%
Foam thickness Uniform – CV¼3%
Top face sheet thickness Uniform 1.2 mm CV¼3%
Half unit cell length Uniform 34.1 mm CV¼3%
Angle of corrugation Uniform 801 CV¼3%
Density of titanium Normal 4429 kg/m3 CV¼2.89%
Thermal conductivity of titanium Normal 7.6 Wm/K CV¼2.89%
Specific heat of titanium Normal 564 Jkg/K CV¼2.89%
Density of beryllium Normal 1850 kg/m3 CV¼2.89%
Thermal conductivity of beryllium Normal 203 W/m/K CV¼3.66%
Specific heat of beryllium Normal 1875 J/kg/K CV¼2.89%
Density of foam Normal 24 kg/m3 CV¼5.78%
Thermal conductivity of foam Normal 0.105 W/m/K CV¼5.78%
Specific heat of foam Normal 1120 J/kg/K CV¼2.89%
Initial temperature Normal 0 s¼ 0:01
Tallow Lognormal 660 K CV¼2.42%
Tdetallow – 623.15 K

Table A2
Correlated random variables.

Variable Correlation coefficient

Density of titanium 0.95
Thermal conductivity of titanium
Density of beryllium 0.95
Thermal conductivity of beryllium
Density of foam 0.95
Thermal conductivity of foam

Table A3
Goodness-of-fit statistics for the surrogate of the
maximum bottom face sheet temperature.

Fit statistic Value

R2 0.99
PRESSRMS 0.20%
eRMS 0.07%
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where

Ttrueðd; r; v0Þ ¼ T0ð1�v0Þþð1�ec;trueÞΔTcalcðd; rÞ ðD:2Þ
Given the uncertainties in v0, ΔTcalc , ec, and Tallow, we can calculate
the variance of the limit state as

s2g;current ¼ T2
0s

2
v0 þs2ΔTcalc

þΔT2
calcs

2
ec þs2ΔTcalc

e2c þs2ecs
2
ΔTcalc

þs2Tallow

ðD:3Þ
We use the subscript “current” to denote this as the limit state that
is used in the current paper.

In previous work [9], the limit state was formulated as

gprevious ¼ Tdet
allow�Tcalcðd; rÞð1�ecÞ ðD:4Þ

for which the variance is

sgprevious ¼ s2Tcalc
þT2

calcs
2
ec þs2Tcalc

e2c þs2ecs
2
Tcalc

ðD:5Þ
In the current work, we included the additional uncertainties in
the initial temperature, calculated change and temperature, and
allowable temperature to form a more realistic problem.

Let us consider two cases where redesign the combination of
the test and redesign reduces the standard deviation of ec for the
design listed in Table D1. The values of the uncertain variables are
given in Table A1, for which the variables involved in the

calculation of Tcalc and ΔTcalc result in a standard deviation of
12.4 K in these values.

Using Eqs. (D.3) and (D.1), we calculate the standard deviation
of the limit state g as shown in Table D2.

It was observed that the additional uncertainties, particularly
the uncertainty in Tallow, reduced the effect of the test and
redesign's reduction of sec on the reduction of the standard
deviation of the limit state. The reductions were more than two
times larger using the previous formulation, which accounts for
the differences in mean and 95th percentile of the probability of
failure we observed in the current work and the work in the
previous paper.
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Table C1
Summary of surrogates.

Surrogate Inputs # of points
for fitting

PRESSRMS
a (%) Test eRMS

b (%)

β ðTallow�T0Þ, S, ec 40 11 7
m ðTallow�T0Þ, S 20 0.5 0.1

a PRESSRMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=pÞeTXV eXV

q
, where p is the number of points used for fitting and

eXV is the vector of the difference between the true value and the surrogate
prediction.

b eRMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=qÞeTtestetest

q
, where q is the number of test points and etest is the

vector of the difference between the true value and the surrogate prediction.

Table D1
Values of the uncertain variables in the limit states.

Distribution Before redesign After redesign case 1 After redesign case 2

T0 300 (deterministic)
Tcalc N(550,12.42)
ΔTcalc N(250,12.42)
Tallow LN(660,162)
ec N(0,0.0692)a N(0,0.06212)b N(0,0.0352)c

a This is the standard deviation of the normal distribution that is equivalent to
the uniform distribution of ec between 70.12 (i.e., 0:12=

ffiffiffi
3

p
).

b In case 1, redesign causes a 10% reduction in standard deviation of ec.
c In case 2, redesign causes a 50% reduction in standard deviation of ec.

Table D2
Standard deviation of the limit states before and after redesign. Note that the
nominal value of ec is 0.

Distribution Before redesign After redesign
case 1 (% change)

After redesign
case 2 (% change)

sgprevious 39.9 36.4 (�9%) 22.7 (�43%)
sgcurrent 26.8 25.7 (�4%) 22.2 (�17%)
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