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Abstract: When composite laminates are operated at cryogenic temperatures, thermal 
stresses arise. This is due to the difference in coefficients of thermal expansion of 
different plies and also between the fiber and matrix. While the former is taken into 
account in the composite structural analysis, the latter, called micro-thermal stresses, has 
not been given much attention. In this paper the Direct Micromechanics Method is used 
to investigate the effects of micro-thermal stresses on the failure envelope of composites. 
Using FEA the unit-cell of the composite is analyzed. Assuming the failure criteria for 
the fiber and matrix are known, the exact failure envelope is developed. Using the 
micromechanics results, Tsai-Wu failure envelope is modified to account for the micro-
thermal stresses. The approach is demonstrated using two example structures at cryogenic 
temperature. 
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Introduction 
 
As composite structures are more commonly operated at temperatures different from their 
stress free reference temperature, e.g., cryogenic tanks [1], the need for accurate thermal 
analysis procedures arises. Yet, when these procedures involve phenomenological failure 
criteria, the thermal stresses are only dealt with on a macroscopic level or ply-level. The 
mismatch of the coefficients of thermal expansion (CTE) of the fiber and matrix 
materials is also a source of thermal stress, which is not accounted in stress analysis, as 
the composite materials are usually modeled as homogeneous orthotropic materials. 
Consider a change in temperature TΔ  in a unidirectional composite modeled as an 
orthotropic material. If the lamina is allowed to expand freely, then the strains will be 
given by , etc., and there will be no stresses in the composite. Then, any of the 
phenomenological failure criteria such as maximum stress, Tsai-Hill or Tsai-Wu theories 
would not predict failure of the composite, as there are no stresses. However, there will 
be stresses within the composite because of the mismatch in CTEs of the fiber and 
matrix. The average of these stresses, which are the macro-stresses, will be equal to zero. 
However, if the micro-thermal stresses are large enough, they can cause failure of the 
matrix or the fiber-matrix interface. Such failures cannot be predicted by the 
aforementioned phenomenological failure criteria. 

1 Tα Δ

In this paper the Direct Micromechanics Method (DMM) is used to investigate the 
effect of micro-thermal stresses on the failure of fiber reinforced composites at cryogenic 
temperatures. These results are compared to results obtained using available 
phenomenological failure criteria. The DMM, first proposed by Sankar, is a finite 
element-based micromechanical analysis of the composite unit cell (also called a 
representative volume element). It has been used in several articles, e.g., [1-5], to analyze 
and evaluate phenomenological failure criteria. The DMM can be thought of as a 
numerical laboratory, capable of simulating a variety of loading combinations, which 
may be difficult to achieve in the actual laboratory. This can range from uni-axial stress 
states, to full 3D stress states. The DMM procedure can be divided into two parts - a 
finite element stress analysis of the unit-cell and a micromechanical failure analysis 
(MFA). In this paper we suggest modifications to phenomenological criteria by taking 
into account the apparent loss of strength at cryogenic temperatures. Then, the modified 
failure criteria, which are adjusted for the micro-thermal stresses, are found to be 
satisfactory in predicting failure in composite structures operated at cryogenic 
temperatures. The procedures are illustrated by considering two example composite 
structures. 
 

 
Micro-Mechanical Analysis 

 
 The goal of the finite element-based micro-mechanics is to obtain the unit-cell 
response, when subjected to different loads, either mechanical or thermal. In the DMM 
procedure, the unit-cell is subjected to six different independent macro-strains and one 
thermal load case. In practice this results in seven different FE models, which however 
share geometry, material properties, elements and mesh properties as explained in the 
following paragraphs. 
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 The unit cell was analyzed using the commercial software Abaqus®, Version 6.6-
1. In this paper, two different coordinate systems will be used. The 123-system refers to 
the principal material directions, with the 1-axis coinciding with the fiber direction. The 
xyz-coordinate system is used in the FEA model to apply boundary conditions etc. The z-
axis coincides with the fiber direction. The two coordinate systems are shown in Figure 1. 
 A hexagonal unit-cell is used in this study (Figure 2). The hexagonal geometry is 
chosen over the square as the hexagonal pattern is closer to the random fiber distribution 
commonly found in unidirectional fiber composites [1]. The characteristic length L, fiber 
volume fraction Vf, fiber radius r and thickness t of the unit cell are presented in Table 
1.The material properties chosen are typical of carbon/epoxy composite, since this is 
commonly used material in aerospace structures for cryogenic applications. The material 
properties are given in Tables 2 and 3. The tensile, compressive and shear strengths are 
denoted by ST, SC and S12, respectively. It should be noted that the purpose of this paper is 
not to accurately determine the properties of a carbon/epoxy composite, but to compare 
the DMM with other failure criteria. As such, the values of the material properties are of 
less important.   
 As mentioned earlier, the unit-cell is subjected to six different mechanical load 
cases, and one thermal load case, which will be explained in a following section. In each 
of the mechanical load cases, the six macro-strains of the composite are set to unity one 
at a time. The periodic boundary conditions for the six unit-strain cases and the thermal 
case are presented in Table 4. This part of the FEA is based upon work done by 
Stamblewski, et al. [5]. In Table 4 u, v and w denote the displacements in the coordinate 
directions. The subscripts a0, a1, etc. denote the different sides of the hexagonal unit cell 
as shown in Fig. 2. The symbol L denotes the distance between the opposite faces of the 
hexagon. 
 
 The stiffness or elasticity matrix [C] of the homogenized composite can be 
calculated from the macro-stresses in the unit-cell for each of the unit macro-strain cases 
as 
 

( )

( )

j
i

ij j
j

C
σ
ε

=    ,     i,j = 1,…,6  (no summation)                  (1) 

 
In the above equation ( )j

iσ  is the ith macro-stress for the jth unit-strain case and ( ) 1j
jε = . 

The six macro-stresses for each unit strain case are calculated as the volume average of 
the corresponding micro-stresses: 
 

max
( ) ( )1 e
e e

i i
e

V
V

σ σ= ∑  ,     i = 1,…,6                  (2) 

 
where V(e) and V, respectively, are the volumes of element e and the unit cell, σ(e)

  is the 
average micro stresses in element e and emax is the total number of elements.  For the 
present example, the elasticity matrix of the composite was found to be 
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From [C], the engineering elastic constants (see table 5) are calculated using the 
relationship 
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The results shown in Table 5 are compared with that from Rule of Mixtures (RoM) just to 
make sure there are no major errors in the FE analysis.  
 The thermal load case (seventh case) consists of applying boundary conditions on 
the unit cell such that all macro-strains are equal to zero, and subjecting the entire unit 
cell to a uniform temperature change TΔ . Usually TΔ is taken as 1 C. The coefficients of 
thermal expansion can be calculated using the relation [3] 
  

{ } { }(7)11 [ ]C
T

α σ−= −
Δ

                        (5) 

 
where {σ}(7) are the macro-stresses corresponding to the thermal case (seventh load case).   
For the present example problem α’s are found to be 
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Table 6 shows a comparison between the above CTEs and the values calculated using the 
rules of mixtures (RoM) [6]. It can be seen that the relative error between the FEA and 
the RoM results for α1 is somewhat larger than that for α2. However, it should be noted 
that both values of α1 are close to zero, and there will be no significant thermal strains in 
the fiber direction. 
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Micromechanical Failure Analysis 
 
 The objective of the micromechanical failure analysis (MFA) is to use the results 
of micromechanical stress analysis in order to predict failure initiation in the composite. 
Let us consider a composite laminate subjected to force resultants ( ), ,x y xyN N N , moment 

resultants ( , , )x y xyM M M , and temperature differential TΔ . Then, we can use the 
micromechanics to determine the micro-stresses in each of the element used in the finite 
element analysis of the unit-cell. Since we know the failure criteria of the fiber and 
matrix materials and also the interface, we can determine if failure has initiated in any of 
the elements. Of course, failure of one element cannot be considered as the ultimate 
failure of the composite. However, it is similar to first-ply failure in laminates, and then 
the forces acting on the laminate correspond to failure initiation. 
 In this work we use the maximum stress failure criteria for the fiber and matrix 
materials. The fiber-matrix interface failure is based on the interface tensile stress and the 
interfacial shear stress [2]. We assume if the interface is under compression, it has no 
effects on interfacial failure. 
 Let the force and moment resultants in the laminate be represented by {N} and 
{M}. The mid-plane strains and curvatures in the composite can be calculated using the 
classical lamination theory as [6] 
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where the laminate stiffness is defined by the so called A, B and D matrices, NT and MT, 
respectively, are the thermal forces and moments. Then, the strains in a ply of interest in 
the laminate at a location z is obtained as 
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The strains can be transformed to obtain the strains [ in the principal material 
directions. The stresses in the ply are then derived as 
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We will assume the transverse shear strains 13γ  and 23γ in the ply are negligibly small. 
The extensional strain 3ε  is calculated from the plane stress assumption as 
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Having calculated all the six (macro) strain components and temperature in the ply, we 
can apply the micromechanical failure analysis (MFA) to check if the ply failure has 
occurred or not. Let the macro strains in the ply be represented as a 6×1 column matrix 
{εΜ}, where the superscript M denotes that these are macro-strains. Then the micro-
stresses{ }μσ  in a finite element, say Element e, of the unit-cell can be obtained by 
superposition as 
 
 { }

( )
[ ]
( )

{ }
( )

{ }
( )

( ) ( ) ( )

6 16 66 1 6 1

e e eMH T sμσ ε
××× ×

= + Δ  (11) 

 
where the matrix [H] is the matrix of influence coefficients. For example, the first column 
of H contains the six stresses in Element e for a unit-macro strain ε1 in the composite. 
The six columns of H correspond to the six unit-stain cases of DMM discussed in the 
preceding section. The column matrix {s}(e) contains the stresses in Element e for a unit 

(seventh case of DMM). TΔ
 Once we know the state of stress in an element, we can determine its failure status 
from its failure criterion. This procedure is repeated for all the elements including the 
fiber-matrix interface in the unit-cell FE model. A flow chart describing the 
aforementioned procedures is presented in Fig. 3. Details of the DMM failure analysis 
have been given in various papers, e.g., [2-5] 
 
 

DMM Failure Envelope 
 
 The micromechanical failure analysis procedures described above can be used to 
develop failure envelopes for the composite. In this case we start from the macro-stresses 
in the ply rather than from force and moment resultants. For example, the failure 
envelope in the 1 2σ σ−  plane can be developed by varying the values of these two macro-
stress components and determining various combinations that correspond to failure 
initiation in the composite. Such a failure envelope is shown in Fig. 4. In this figure the 
symbols denote the DMM failure envelope. 

From the DMM failure envelope one can develop phenomenological failure 
criteria. For example, the Tsai-Wu failure criterion under plane stress conditions is given 
by 

 
2 2 2

11 1 22 1 66 12 1 1 2 2 1F F F F Fσ σ τ σ σ+ + + + =     (12) 
 

The Fs in the above equation are strength coefficients that can be expressed in 
terms of uniaxial strengths as follows [6]: 
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where are the tensile and compressive strengths in the 1-direction (fiber 
direction), are the strengths in the 2-direction (transverse directions) and S12 is 
the shear strength. It should be noted that we have not included the coupling term 

1  and TS S

2  and TS S

12 1 2F σ σ  
on the LHS of Eq. (12). We found a better fit to DMM results without the coefficient F12. 
Narayanaswami and Adelman [7] have also made the same observation in fitting the 
experimental results to Tsai-Wu failure envelope. We can estimate the strengths 

and using the DMM, and then use them in the above equations (Eqs. 12 
and 13) to plot the phenomenological failure envelope. It should be noted that we have 
replaced physical testing in the laboratory by the simulations on the unit-cell in order to 
determine the strength values of the composite. For the example considered herein, the 
Tsai-Wu envelope is shown by solid line in Fig. 4. One can note that there are areas 
wherein the Tsai-Wu is conservative compared to DMM and there are areas where it 
overestimates the strength. The comparison between the two failure envelopes is given in 
Table 7 in terms of percentage of areas where the Tsai-Wu over predicts the strength 
determined by DMM. One can note that the Tsai-Wu criterion over-predicts (un-
conservative) 4% of the cases and under-predicts (conservative) 12% of the cases. The 
areas were computed from the figure using the software SolidWorks. 

1 1S S 2, ,T C TS S2C

 
Effects of thermal stresses on the failure envelope 

 
The aforementioned procedures were repeated for the case TΔ = -80 C. The DMM failure 
envelope is shown in Fig. 5. In the same figure we have shown the Tsai-Wu failure 
envelope also. One can note that the DMM envelope is smaller indicating there is an 
apparent loss of strength. In fact the tensile strength in the 1-direction has significantly 
reduced (Table 8). Similar observations were also made by Whitley and Gates [8]. Note 
the deviation between the DMM at -80 C and Tsai-Wu is significant as indicated in Table 
7 (third row of Table 7). At ΔT=-80 C the T-W theory over-predicts the strength 26% of 
the time. The reduction in strength is due to micro-thermal stresses that develop, 
especially in the matrix phase. As we will demonstrate in the next section, these effects 
could not be captured by the laminate level thermal stress analysis. We suggest 
modifying the Tsai-Wu failure envelope with the strengths measured at -80 C. The 
uniaxial strengths at ΔT=-80 C were obtained form the DMM analysis. The strength 
values are given in Table 8. Using these strengths one can plot the modified T-W 
envelope, which is shown in Fig. 6. One can note that the modified T-W envelope, which 
is adjusted for micro-thermal stresses, fit the DMM data well. It over-predicts strength 
only 4% of the time (last row of Table 7). To further illustrate the practical application of 
modified Tsai-Wu criterion we present two illustrations in the next section. 
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Illustration of Modified Tsai-Wu Criterion 
 

We illustrate the application of modified Tsai-Wu criterion in two example 
composite structures. Example 1 is a pressure vessel subjected to both hoop stresses and 
longitudinal stresses. Example 2 is a laminate subjected to bending moments Mx and My. 
We calculate the maximum loads that can be applied before failure at room temperature 
(ΔT=0) and at a cryogenic temperature (ΔT=-80 C). For both plates Classical Lamination 
Theory (CLT) is used to find the ply stresses. These stresses are then input to the DMM 
procedure and the Tsai-Wu failure criterion to obtain the maximum load that can be 
applied according to each method. We tacitly assume that there are no residual thermal 
stresses at room temperature.  
 
Example 1 

Consider a thin-walled composite pressure vessel with closed end caps. The force 
resultants are given by Nx=pD/4, Ny=pD/2 and Nxy=0, where D, the mean diameter, is 
taken as 1 m.  Our goal is to determine the maximum allowable pressure p using both 
DMM and Tsai-Wu failure criterion. We consider four different symmetric laminates as 
listed in Table 9. The strength coefficients listed in Table 8 are used in determining the 
maximum pressure that can be applied according to T-W criterion. This is a 
straightforward textbook problem [6]. In applying the DMM we chose an iterative 
approach where the pressure p is increased from a low value until failure is noticed in one 
of the finite elements in the micromechanical model of the unit-cell (see flowchart in Fig. 
3). We performed the calculations for both room temperature (ΔT=0) and a cryogenic 
temperature (ΔT=-80 C). 
 The results are listed in Table 9 for ΔT=0.  From Table 9 one can note that the 
Tsai-Wu theory predicts the maximum pressure quite well.  Actually, the predictions are 
conservative (safety factor >1) and the difference is within 5%. On the other hand at 
cryogenic temperature (3rd column of Table 10) the T-W predictions are non-conservative 
(safety factor <1) and the deviation from DMM are in the range of 22 - 34%. This is due 
to the fact that the classical laminate analysis takes into account the thermal stresses that 
arise due to mismatch in the CTEs of the plies, but it does not account for the micro-
thermal stresses. However, the micro-thermal stresses are accounted for by the modified 
Tsai-Wu criterion using the adjusted strength coefficients. The maximum pressures 
calculated using the modified T-W criterion are shown in the last column of Table 10. 
Still the results are non-conservative; however the deviation from DMM results is much 
less. 
 
Example 2 
 In the previous example the laminate was subjected to in-plane forces only. In the 
second example we consider the same laminates subjected to bending moments 
Mx=My=M0, and we determine the maximum M0 before failure using both DMM and 
Tsai-Wu theory. As before we consider two cases ΔT=0 and ΔT=-80 C. The results are 
summarized in Table 11 for ΔT =0 and in Table 12 for ΔT =-80 C. The results are very 
similar to that for Example 1. The T-W criterion works well at room temperature (see 
Table 11) although the results for M0max are slightly un-conservative. Again at ΔT =-80 C 
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(Table 12) we have to use the modified T-W criterion to predict the maximum bending 
moment accurately. 
   

Conclusions 
 

The Direct Micromechanics Method (DMM) is a powerful tool to determine if a 
composite laminate can withstand a given set of force and moment resultants at a given 
temperature. However, this is an expensive method, as each element in the finite element 
model of the unit-cell has to be analyzed for failure. On the other hand, 
phenomenological failure criteria such as Tsai-Wu criterion can be derived from the 
DMM, and can be efficiently used. Traditional thermo-mechanical stress analysis of 
composite structures account for thermal stresses at ply-level that arise due to difference 
in CTEs of the plies. However, there are thermal stresses at micro-level due to mismatch 
in CTEs of fiber and matrix materials, which are not accounted for in the structural 
mechanics. This is because of the fact that unidirectional composites are treated as 
homogeneous materials. The micro-thermal stresses can be significant at cryogenic 
temperatures where large stresses develop in the matrix phase due to CTE mismatch. The 
DMM, which is the analysis of the fiber and matrix elements in the unit-cell, includes the 
micro-thermal stresses automatically, and thus provides a more accurate failure analysis. 
On the other hand, the Tsai-Wu failure envelope can be modified to account for the 
micro-thermal stresses and can be used in conjunction with the traditional laminate 
thermal stress analysis. The proposed method was illustrated in two composite structures 
to determine the allowable loads. The modified Tsai-Wu criterion was able to predict the 
maximum loads with good accuracy compared to DMM. 
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