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ABSTRACT 

Micromechanics tools investigating the in-plane elastic and strength properties of 3D woven 
composites are developed in this work. Particular attention is directed toward constructing 
detailed geometry and finite element models of an example 3D weave architecture available in 
the literature. The models are then modified to investigate the effect of including the Z-yarns on 
the changes in stiffness and strength properties. In particular, the effect of incorporating the ‘Z-
Crowns’ is quantified with the aid of three-dimensional finite element simulations. 
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INTRODUCTION 
 
Traditional laminated, woven and braided composite materials are inherently susceptible to inter-
layer delamination due to their micro-structural geometry and intrinsically weak inter-laminar 
bonds. Specifically, in hard armor applications, candidate composites should possess high areal 
density, superior delamination resistance and high fracture toughness. Three-dimensional (3D) 
woven composites are a class of materials that encompass all of the above mentioned properties. 
The micro-structural geometry of 3D woven composites is characterized by several layers of 
[0/90] laminates ‘bound’ together with the aid of warp weavers or Z-yarns.  
 
In practice however, the [0/90] laminates are integrally woven with Z-yarns, resulting in the 
model architecture shown in Figure 1. This process imparts favorable mechanistic characteristics 
such as high in-plane and through-thickness stiffness and strength, superior delamination 
resistance and high fracture toughness. Consequently, it becomes imperative to quantify the 
effect of integral Z-weaving on the stiffness, strength and fracture properties of 3D woven 
composites.  
 
Several researchers [1 – 11] have investigated various aspects of the response of 3D woven 
composites in different environments. Elastic properties, strength, ductility and fatigue life of 3D 
woven composites [1] were experimentally determined to be highly sensitive to tow waviness. It 
should be noted here that 3D woven fabrics are not characterized by tow undulations similar to 
those witnessed in plain and satin weave fabrics. Tow waviness in [1] refers to sporadic 
undulations of nominally straight tows. As such, tow undulations have not been neglected in 
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Figure 1, but rather, the presented architecture approximates an actual 3D woven system [2]. The 
complete stress-strain response of 3D woven composites under quasi-static loads was 
experimentally characterized in [2], wherein tow waviness was not evident in the reported 
micrographs.  
 
Fracture of 3D woven Carbon/Epicote 828 epoxy resin composites in [3] was linked to 
tow/matrix debonding, tow breakage, and fiber pull-out. The studies in [3] also confirmed the 
observations regarding mechanical properties of 3D woven composites reported in [1]. In a more 
general sense, mode-I inter-laminar fracture toughness and delamination resistance of 3D woven 
composites [4] was shown to significantly improve with relatively small volume fractions of Z-
yarns. 
 
From a manufacturing standpoint, the experimental characterization in [5] and [6] brought to 
light severe knockdowns in the strength of dry load bearing and uni-directional composite yarns. 
Abrasion damage caused by the fibers sliding against each other and the loom machinery was 
cited as the major contributor toward the degradation in strength properties. 
 
Performance of 3D woven composites under impact loads was the main focus of studies in 
[7,8,9]. In general, 3D woven composites appear to have better ballistic efficiency, and 
controlled delamination as opposed to 2D woven composites [7] and as such incorporate better 
energy transfer characteristics [9]. 
 
Analytical work [2,10,11] has mainly focused on predicting the stiffness and strength of 3D 
woven composites. Homogenized “3D Mosaic” [2] and iso-stress/iso-strain based micro-
mechanics models [10,11] tend to overestimate the properties since they are unable to account 
for localized events such as yarn micro-bending. Computational modeling on the other hand 
[8,9,11] can incorporate the three-dimensional stress state, without making any simplifying 
assumptions. However, in [8,9,11], the authors neglected Z-Crowns [2] (see also Figure 1), 
perhaps leading to a stiffer response.  
 
The spectrum of works cited above, while not exhaustive, suggest that tow waviness [1,3,11], 
abrasion damage due to weaving [5,6], and introduction of Z-yarns [4,7] are primary factors that 
significantly influence the mechanics of 3D composites. Potential applications of 3D woven 
composites in critical environments such as vehicle armor motivate their complete in-plane and 
through-thickness characterization under static, rate-sensitive and dynamic loads.  
 
However, the present study focuses on investigating the effect of Z-yarns on the in-plane elastic 
properties and strength of a model 3D woven composite system shown in Figure 1 with the aid 
of finite element based generalized micromechanics tools. The generality of the tools developed 
herein would lend itself for application to any particular woven system. Future studies as part of 
this broad research program would report on other aspects of the response of 3D woven 
composites mentioned above. 
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GEOMETRIC AND FINITE ELEMENT MODELING OF 3D WOVEN COMPOSITES 

 
Modeling the geometry 
 
The accurate prediction of the response of these materials under different loading environments 
mandates a detailed representation of their 3D weave architecture. Extension of modeling 
strategies developed in [12,13] to study 3D composites is not a trivial matter, simply because 
plain and satin weave textile composites are relatively two-dimensional (2D) when compared 
with material systems such as those depicted in Figure 1. As such in this study, the commercially 
available ABAQUS® finite element software is employed for developing solid models and 
corresponding finite element meshes of the unit-cell of the material system shown in Figure 1. 
 
Figures 1(a) – (b) serve to present schematic representations of the weave architecture and isolate 
a repeating unit-cell that captures the periodicity of this textile composite. As shown in Figure 
1(c), a coordinate system XYZ is established with its origin located at the geometric center of the 
repeating unit-cell, such that it constitutes the global coordinate system. Consistent with the 
definition of XYZ, the warp and fill tows constitute the planar 0o (longitudinal) and 90o 
(transverse) tows, respectively. The out-of-plane undulating fiber bundles are called Z-yarns.  
 
Micrographs of processed 3D composites indicate a thin layer of matrix material above and 
below the Z-Crowns [3]. As such in the model simulations, a thin sliver of additional matrix 
material is introduced as shown in Figure 1(c) with δz = 0.1*hz. The undulating path of the Z-
yarns has been assumed to be regular and the tow cross-sections have been assumed to be 
uniform rectangles in the present study. Particular geometry parameters employed to model the 
material system in Figure 1 are reported in Table 1. Consequently, the total height of the unit-cell 
is given by: 
 
௎஼ܪ  ൌ ܪ ൅ ௭ (1)ߜ

  
The geometric modeling strategy developed herein comprises of defining suitable volumetric 
partitions to represent the warp and fill tows, Z-yarns, and matrix material, within a cuboid of 
dimensions L×W×HUC. The transversely isotropic tows and yarns, defined via partitioning, are 
then associated with appropriate local material directions as illustrated in Figures 2(a) – (b). The 
remaining volume of the cuboid is designated as the isotropic inter-tow epoxy resin matrix 
depicted in Figures 2(a) – (b).  
 
In this study, two different configurations of the unit-cell in Figure 1(c) are modeled. The first 
configuration, which includes the Z-Crowns is designated ‘Z-Crowned Composite’ and shown in 
Figure 2(a). In the second configuration, the Z-Crowns are neglected consistent with [2,9]; this 
arrangement is termed ‘Uncrowned Composite’ as shown in Figure 2(b). Due to the particular 
geometry, the overall height of the unit-cell in this case is given by: 
 
௎஼஼ܪ  ൌ ܪ െ 2݄௭ (2)
All other dimensions are the same as those reported in Table 1.  
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The material system in Figure 1 comprises of three layers of fill tows and two layers of warp 
tows integrally woven with Z-yarns. The volume fraction of the Z-yarns varies between 1% and 
3%, and as such, the material is similar to a [0/90] stacked laminate, except for the presence of 
the Z-yarns and the matrix material. As such, the mechanistic limiting case of this configuration 
is an ‘Equivalent Laminate’ as shown in Figure 2(c). The overall height of the Equivalent 
Laminate is ܪ௅஺ெ ൌ  ௎஼஼. In Equation (2) and the above discussion, the subscripts ‘UCC’ andܪ
‘LAM’ indicate Uncrowned Composite and Equivalent Laminate, respectively. 
 
Finite element discretization 
 
The solid models of the unit-cells shown in Figures 2(a) – (c), were meshed with 3D eight-node 
linear continuum brick elements within ABAQUS. A structured meshing algorithm was utilized 
such that the individual finite elements were characterized by regular hexahedral geometry. 
Consequently distorted elements were altogether eschewed as part of the meshing process. The 
partition-feature based modeling methodology described earlier, results in merged interfaces at 
material boundaries. Therefore, while meshing, duplicate or coincident nodes are not generated 
at these interfaces. As such, additional constraints for coincident nodes and node merging 
operations at material boundaries are completely avoided. 
 
Boundary conditions 
 
Exploiting the periodicity of the woven architecture in 3D composites, appropriate periodic 
boundary conditions were specified on the four vertical faces of the unit-cells corresponding to X 
= ±a/2 and Y = ±b/2. The unit-cells faces located at Z = ±c/2 were set free. The generalized 
dimensions ‘a’, ‘b’, and ‘c’, are reported in Figure 2(d). In particular, the following relations are 
implied for ‘a’, ‘b’, and ‘c’: 

 

ܽ ൌ ܮ
ܾ ൌ ܹ

ܿ ൌ  ൝
௎஼ܪ ൅ ௭ߜ ՜ ܼ െ ݀݁݊ݓ݋ݎܥ ݁ݐ݅ݏ݋݌݉݋ܥ

௎஼஼ܪ ՜ ݀݁݊ݓ݋ݎܷܿ݊ ݁ݐ݅ݏ݋݌݉݋ܥ
௅஺ெܪ ՜ ݐ݈݊݁ܽݒ݅ݑݍܧ ݁ݐܽ݊݅݉ܽܮ

 (3)

Periodic boundary conditions simulating remote in-plane tension and shear are reported in Table 
2. Detailed discussions regarding the derivation of these boundary conditions are presented 
elsewhere [14]. 
 
Constituent material properties 
 
The transversely isotropic fill tows, warp tows and Z-yarns were intrinsically S-2 Glass/Dow 
Derakane 8084 Vinyl-Ester unidirectional composites, with material properties listed in Table 3. 
The isotropic epoxy resin matrix was characterized by elastic modulus, ܧ ൌ 3.53 GPa, Poisson’s 
ratio, ߥ ൌ 0.35, and yield strength, ܵ௬ ൌ 125 MPa. 
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MECHANICS OF 3D WOVEN COMPOSITES 

 
The Direct Micro-Mechanics (DMM) techniques discussed in [14] are employed herein to 
develop generalized finite element method based approaches to predicting the in-plane effective 
elastic properties and strengths of 3D woven composites. Computation of the extensional 
stiffness [A], bending-extension coupling stiffness [B] and the bending stiffness [D] matrices is 
central to the above methods. A general algorithm would be presented later toward the end of 
this section.  
 
Unlike the meso-volume based 3D-Mosaic [2] and analytical [10,11] models, the DMM 
technique allows one to capture the effects of geometric details leading to critical mechanistic 
events, such as yarn micro-bending. As such, this method better approximates the response of 3D 
woven composites. Especially while addressing non-linear rate-sensitive, impact and ballistic 
loading response of these advanced materials, 3D finite element models incorporating micro-
structural geometric details have to be developed.  
 
In-Plane Effective Elastic Properties of 3D Woven Composites 
 
Following the discussions in [14] it could be shown that, in the absence of bending-extension 
coupling and applied moments, the in-plane resultant forces are given by: 
 

 ቐ
௫ܰ

௬ܰ

௫ܰ௬

ቑ ൌ ሾܣሿ ൝
௫ߝ
௬ߝ
௫௬ߛ

ൡ (4)

Furthermore, the equivalent stiffness matrix ሾܳሿ of the woven/stitched composite laminate 
referred to the global coordinate system could be computed as, 
 
 ሾܳሿ ൌ ሾܣሿ/݄ (5)
wherein ‘݄’ is the overall height of the laminate. Once the ሾܳሿ matrix has been determined, the 
effective elastic properties of the composite could be computed as: 
 

 

ە
ۖ
۔

ۖ
ۓ

௫௫ܧ
௬௬ܧ
௫௬ܩ
௫௬ߥ
௬௫ߥ ۙ

ۖ
ۘ

ۖ
ۗ

ൌ Δ

ە
ۖ
۔

ۖ
ۓ

ܳሺ1,1ሻ
ܳሺ2,2ሻ

ܳሺ3,3ሻ/Δ
ܳሺ1,2ሻ/Δܳሺ2,2ሻ
ܳሺ1,2ሻ/Δଶܳሺ1,1ሻۙ

ۖ
ۘ

ۖ
ۗ

 (6)

 
In Equation (6):  

 Δ ൌ 1 െ
ܳሺ1,2ሻଶ

ܳሺ2,2ሻܳሺ1,1ሻ (7)
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Predicting the In-Plane Strength of 3D Woven Composites 
 
The broader problem in predicting the strength of 3D woven composites focuses on computing a 
load factor for the composite under a general state of in-plane loading represented by ሼߪሽ ൌ
൛ߪ௫ ߪ௬ ߬௫௬ൟ்

. However, in this case, the constitutive [A] matrix is related to the resultant forces 
as described in Equation (4). Therefore the above problem could be restated as involving the 
computation of a load factor for the composite under a given state of in-plane loading described 
by ሾܰሿ ൌ ൣ ௫ܰ ௬ܰ ௫ܰ௬൧்

. 
 
The approach is based on computing load factors under five unique loading conditions given by:  
 

 

ە
ۖ
۔

ۖ
ۓ ௅ܰሺାሻ

௅ܰሺିሻ
்ܰሺାሻ
்ܰሺିሻ

௅்ܰ ۙ
ۖ
ۘ

ۖ
ۗ

ൌ  

ە
ۖ
۔

ۖ
ۓ 1 0 0

െ1 0 0
0 1 0 
0 െ1 0
0 0 1 ۙ

ۖ
ۘ

ۖ
ۗ

 (8)

From Equation (8), ௅ܰሺାሻ ൌ ሼ1 0 0ሽ் would represent a unit tensile load in the Longitudinal (L) 
or 0o-direction of the composite. Similarly, ௅ܰሺିሻ ൌ ሼെ1 0 0ሽ் would indicate a unit compressive 
load in the L-direction of the composite. ்ܰሺାሻ ൌ ሼ0 1 0ሽ் and ்ܰሺିሻ ൌ ሼ0 െ 1 0ሽ் have 
corresponding connotations albeit in the transverse (T) or 90o-direction of the composite. 

௅்ܰ ൌ ሼ0 0 1ሽ் indicates a unit shear load parallel to the L – T plane of the composite. 
 
Computing total stress 
 
For any given in-plane loading state [N] determined from Equation (8), the corresponding macro-
strains ሼߝሽ are computed with the aid of Equation (4). Employing the principle of linear 
superposition, and the macro-strains ሼߝሽ, the total stress vector in each element of the finite 
element mesh is computed as: 
 
 ሼߪ௫௬௭ሽ்௢௧௔௟

௘ ൌ ሽ௑௑ߪ௫ሼߝ
௘ ൅ ሽ௒௒ߪ௬ሼߝ

௘ ൅ ሽ௑௒ߪ௫௬ሼߛ
௘  (9)

The 6×1 vectors ሼߪሽ௑௑
௘ , ሼߪሽ௒௒

௘  and ሼߪሽ௑௒
௘  in Equation (9) correspond to the micro-stresses in each 

element as a result of the three individual macro-level unit-strain loading cases listed in  

Table 2. The subscripts ‘XX’, ‘YY’ and ‘XY’ refer to unit-strain in the X-direction, Y-direction and 
XY-shear, respectively.  
 
For checking failure, the material code of the particular element ‘e’ is determined to indicate 
whether it resides within the fill tows, warp tows, Z-yarns or the inter-tow epoxy resin matrix. If 
the element ‘e’ resides within a tow, then consistent with [14], the total stress is transformed to 
the corresponding local 1-2-3 coordinate system: 
 
 ሼߪଵଶଷሽ்௢௧௔௟

௘ ൌ ሾܶሿሼߪ௫௬௭ሽ்௢௧௔௟
௘ ሾܶሿ் (10)
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In Equation (10), [T] is the transformation matrix of direction cosines resulting from appropriate 
coordinate rotations, and the superscript ‘T’ indicates transpose of [T]. The total stress 
ሼߪ௫௬௭ሽ்௢௧௔௟

௘  is not subject to any transformations if ‘e’ resides in the inter-tow epoxy resin 
matrix. 
 
Load factor based on the Tsai-Hill failure criterion 
 
Under plane stress conditions parallel to the 1-2 plane, with the fiber direction being aligned 
along the 1-direction, the Tsai-Hill failure criterion is given by (Jones [15]): 
 

ଵଵߪ 
ଶ

ܺଶ െ
ଶଶߪଵଵߪ

ܺଶ ൅
ଶଶߪ

ଶ

ܻଶ ൅
߬ଵଶ

ଶ

ܵଶ ൌ 1 (11)

In Equation (11), ሼߪሽ ൌ ሼߪଵଵ ߪଶଶ ߬ଵଶሽ் represent a particular planar loading state, and X, Y, and S 
are the in-plane longitudinal, transverse and shear strengths of the composite, respectively. 
Appropriate magnitudes of ܺ ൌ ܺ௧ and ܺ ൌ ܺ௖ and ܻ ൌ ௧ܻ or ܻ ൌ ௖ܻ should be used depending 
on the signs of ߪଵଵ and ߪଶଶ. In the above, subscripts ‘ݐ and ‘ܿ’ imply tension and compression, 
respectively. Therefore, if ߪଵଵ is positive, ܺ ൌ ܺ௧ and if it is negative, ܺ ൌ ܺ௖. Similarly, 
positive ߪଶଶ requires ܻ ൌ ௧ܻ and negative ߪଶଶ implies ܻ ൌ ௖ܻ. 
 
Let ߣ be the load factor for a given material under unit tensile load. Further let the planar stresses 
corresponding to the unit tensile load case be ݏଵଵ, ݏଶଶ and ݏଵଶ. The condition 1 < ߣ implies that 
the material can withstand stresses of magnitude ݏߣଵଵ, ݏߣଶଶ, and ݏߣଵଶ. If the Tsai-Hill failure 
criterion is used to check for failure, ߪଵଵ ൌ ଶଶߪ ,ଵଵݏߣ  ൌ ଶଶ, and ߬ଵଶݏߣ ൌ  ଵଶ have to beݏߣ
substituted in Equation (11). As a result, the load factor is given by: 
 

ߣ  ൌ
1

ටݏଵଵ
ଶ

ܺଶ െ ଶଶݏଵଵݏ
ܺଶ ൅ ଶଶݏ

ଶ

ܻଶ ൅ ଵଶݏ
ଶ

ܵଶ

 (12)

In this study, ݏଵଵ, ݏଶଶ and ݏଵଶ appearing in Equation (12), are determined with the aid of 
Equation (10) as: 
 

 ൝
ଵଵݏ
ଶଶݏ
ଵଶݏ

ൡ ൌ ቐ
ଵଵߪ

ଵଶଷ

ଶଶߪ
ଵଶଷ

ଵଶߪ
ଵଶଷ

ቑ

்௢௧௔௟

௘

 (13)

 
Load factor based on the maximum principal stress failure criterion 
 
According to the maximum principal stress failure criterion, failure occurs if the maximum 
principal stress at a point in the material exceeds the yield strength of the material.  
 
Let us assume ݏଵ, ݏଶ and ݏଷ are the principal stresses corresponding to the three-dimensional 
stress state ሼߪሽ ൌ ൛ߪ௫௫ ߪ௬௬ ߪ௭௭ ߬௫௬ ߬௬௭ ߬௭௫ൟ்

resulting from a unit tensile load. Furthermore, let 
ܵ௬ represent the yield strength of the material. If ߣ is the load factor for this load case, then the 
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condition 1 < ߣ implies that the material can actually withstand stresses of the magnitude ߣሼߪሽ. 
As a result, the principal stresses would be ݏߣଵ, ݏߣଶ, ݏߣଷ. Invoking the maximum principal stress 
failure criterion maxሺݏߣଵ, ,ଶݏߣ ଷሻݏߣ  ൒ ܵ௬, the load factor could be computed as: 
 

ߣ  ൌ
ܵ௬

max ሺ|ݏଵ|, ,|ଶݏ| ଷ|ሻ (14)ݏ|

 
Strength computations based on the ‘One Element’ condition 
 
Load factors for tow elements are computed from Equation (12), whereas Equation (14) is used 
to determine load factors for matrix elements. The minimum load factor for the finite element 
determines the corresponding strength of the composite, for each loading case. For instance,  
 

 ܵ௅ሺାሻ
ிா஺ ൌ

min ሺߣ௘ሻ
݄  (15)

indicates the longitudinal tensile strength of the composite corresponding to the load case 
௅ܰሺାሻ ൌ ሼ1 0 0ሽ். The subscript ‘ܮሺ൅ሻ’ represents tension in the longitudinal direction. The 

superscript ‘FEA’ implies that the strength is computed based on stress estimates obtained from 
the finite element boundary value problems listed in  

Table 2. Also in Equation (15), ߣ௘ is the element load factor and ‘݄’ is the overall height of the 
composite, given by ‘c’ in Equation 3.  
 
Similarly,ܵ௅ሺିሻ

ிா஺ , ்ܵሺାሻ
ிா஺ , ்ܵሺିሻ

ிா஺ , and ܵ௅்
ிா஺ could be determined for the remaining four loading cases 

in Equation (8). In the above, subscript ‘(–)’ indicates compression, and superscript ‘T’ refers to 
the transverse direction.  
 
The strength magnitudes determined above are the most conservative estimates since one 
element in the entire mesh dictates the response of the composite. This approach to estimating 
strength is designated the ‘One Element’ condition. Later in this study, discussions focusing on 
relaxing the element failure threshold for computing the planar strengths would be presented. 
 
Computing the Extensional Stiffness and Bending-Extension Coupling Matrices 
 
The crux of implementing the procedures discussed above is the computation of the extensional 
stiffness matrix [A]. Following the discussions in [14,16], the constitutive matrices [A], [B], and 
[D] for a given composite material could be computed with the aid six fundamental macro-level 
unit-strain and unit-curvature finite element boundary value problems. In particular, each macro-
level unit-strain and unit-curvature boundary value problem results in the determination of one 
column of the 6×6 stiffness matrix formulated from the [A], [B] and [D] matrices. 
 
This study however, focuses on the in-plane extensional and shear response of 3D woven 
composites. As such, only the three periodic finite element boundary value problems listed in 
Table 2 would be solved. In each of these boundary value problems, all other macro-strains are 
set to zero. Pursuant to the discussions in [14,16], the solution of the above three boundary value 
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problems leads to the computation of the first three columns of the 6×6 stiffness matrix 
formulated from the [A], [B] and [D] matrices. In other words, the extensional stiffness matrix 
[A], and the bending-extension coupling matrix [B], are fully determined.  
 
 

RESULTS 
 
Deformed meshes 
 
Figure 3 presents the deformed mesh configurations of the Z-Crowned Composite and 
Uncrowned Composite unit-cell configurations. Under the application of the macro-level unit-
strain ߝ௫ ൌ 1, the Z-Crowned Composite exhibits significant micro-bending due to the 
undulating path of the Z-yarns, as shown in Figure 3(a). In fact, through the vertical portion of 
the Z-yarns, the load path is aligned along the plane comprising the weakest 2-3 local material 
directions. Consequently, visible bulging of the Z-yarns near the top ‘Z-Crown’ is seen in Figure 
3(a). The same effect is observed near the bottom ‘Z-Crown’ as well. 
  
However, in the case of the Uncrowned Composite shown in Figure 3(b), the localized micro-
bending is not apparent, since the Z-Crowns have been neglected. Nonetheless, perceptible 
bulging of the included portion of the ‘Z-yarns’ is clearly discernible on account of the alignment 
of the load path discussed above.  
 
Solutions corresponding to unit macro-strain loading cases ߝ௬ ൌ 1, and ߛ௫௬ ൌ 1, do not exhibit 
such severe micro-bending, as reported in Figure 3. Overall, the solutions presented in Figure 3, 
appear to be mechanistically reliable. 
 
Constituent matrices and effective elastic properties 

The extensional stiffness matrix [A] and the bending-extension coupling stiffness matrix [B] 
were computed based on the approach discussed in the previous section. Table 4 reports on the 
results obtained via the finite element method and an analytical solution for a five-layer [0/90] 
laminate resembling the Equivalent Laminate shown in Figure 2(c). The analytical solution is 
based on Classical Lamination Theory as described in [15]. Comparing the solutions for the 
‘Five-Layer [0/90] Laminate’ and Equivalent Laminate reinforces confidence in the approach 
developed in this study. All the solutions reported in Table 4 indicate that the off-diagonal terms 
[A16] and [A26] are zero implying that these materials do not exhibit any shear-extension 
coupling. Furthermore, owing to the geometric symmetry of these materials with respect to the 
mid-plane, the bending-extension coupling matrix [B] turns out to be [0]. 
 
Results for the Z-Crowned Composite and the Uncrowned Composite in Table 4 bring to light 
the detrimental effect of Z-yarns on the stiffness properties of 3D composites. Comparing the 
properties of the Equivalent Laminate in Table 4 and results from [2,9] reproduced in Table 5, it 
is yet again confirmed that introduction of Z-yarns results in stiffness knockdown. As further 
seen from Table 5, it is evident that the results of the present study agree well with published 
data.  
 
 



10 
 

Load factors and In-Plane strengths 
 
In-plane strengths for the Z-Crowned Composite, Uncrowned Composite and the Equivalent 
Laminate, corresponding to the five loading cases in Equation (8) were computed as discussed in 
a previous section, and are reported in Figure 4. Additionally in Figure 4, the in-plane strength of 
the ‘Five-Layer [0/90] Laminate’ computed based on Classical Lamination Theory [15] under 
different loading cases is also reported. For each loading case, the first, second, third and fourth 
bars represent the corresponding strengths of the ‘Five-Layer [0/90] Laminate’, Equivalent 
Laminate, Uncrowned Composite, and the Z-Crowned Composite, respectively. Excellent 
agreement between the strengths computed for the ‘Five-Layer [0/90] Laminate’ and the 
Equivalent Laminate, inspire confidence in the methods developed in this study. Consistent with 
the stiffness properties of these material systems, the in-plane strengths also suffer significant 
knockdowns as a result of integral weaving with Z-yarns. 
 
In order to relax the One Element failure condition, elements in the finite element mesh were 
grouped together on the basis of load factors, regardless of the material code. Distributions of the 
load factors for the first 15% of the elements in the Z-Crowned Composite and the Uncrowned 
Composite unit-cell finite element meshes are presented in Figure 5. The load factors for the first 
15% elements in the Equivalent Laminate finite element mesh acquired unique constant 
magnitudes for individual loading cases, on account of its geometric and mechanistic 
homogeneity. The distributions in Figure 5 show that the load factors stabilize after about 1% of 
the elements are allowed to fail. Moreover, allowing either 5% or 10% elements to fail would be 
too liberal from the perspective of determining strength for a particular load case.  
 
Based on load factors corresponding to 1%, 5% and 10% element failure, new strengths were 
computed for the Z-Crowned Composite and the Uncrowned Composite, for all the five loading 
cases, and are presented in Figure 6. The dashed horizontal lines in Figure 6 represent the 
strengths for the Equivalent Laminate, which as expected remain unaltered. To maintain clarity 
of the results presented in Figure 4 and Figure 6, the strength magnitudes of all the material 
systems corresponding to the One Element and 1% percent element failure criterion are listed in 
Table 6.  
 
Changing the allowable element failure threshold, clearly affects the predicted strengths for the 
Z-Crowned Composite, and the Uncrowned Composite, as shown in Figure 6(a) and Figure 6(b), 
respectively. The percentage increase in the strengths of the Z-Crowned Composite, and the 
Uncrowned Composite for all five loading cases reported in Table 6, correspond to changing the 
element failure threshold from the One Element to the 1% element failure criterion. The 
longitudinal compressive strength of the Z-Crowned Composite is predicted to experience the 
most significant increase. On the other hand, maximum increase in strength for the Uncrowned 
Composite occurs under the transverse compression loading case. Further increases in allowable 
element failure thresholds to 5% and 10% element failure, do serve to push the predicted 
strengths toward those of the Equivalent Laminate, but these criteria are considered to be very 
liberal.  
 
Pursuant to the above discussion, 1% allowable element failure threshold is now set as the 
criterion to choose the load factor for all the three material configurations, under any given state 
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of loading. Strength knockdowns resulting from the One Element and 1% allowable element 
failure threshold are presented in Figure 7. The first bar in Figure 7(a) – (b) corresponds to the 
Equivalent Laminate whereas the second and third bars represent in-plane strengths for the 
Uncrowned Composite and the Z-Crowned Composite, respectively. As the element failure 
threshold is increased, individual load factors decrease and the corresponding strength increases. 
Consequently, the percentage knockdown in strength decreases. 
 
Failure loci 
 
The in-plane strengths computed for the Z-Crowned Composite, Uncrowned Composite and the 
Equivalent Laminate, under the One Element and 1% element failure condition are reported in 
Table 6. Failure envelopes are then plotted based on the Tsai-Wu, Tsai-Hill, and Maximum 
Stress Theory criteria, using the strength values corresponding to the 1% element failure 
condition in Table 6. 
 
Failure envelopes for the Z-Crowned Composite, Uncrowned Composite and the Equivalent 
Laminate, could be plotted for generalized load states ሼߪሽ ൌ ሼߪ௫௫ ߪ௬௬ ߬௫௬ሽ, by suitably varying 
the Euler angles ߶ and ߠ, shown in Figure 8. In particular, ߪ௫௫ and ߪ௬௬ are related as ߪ௬௬ ൌ
௫௫ߪ  tanሺ߶ሻ and failure loci are plotted by varying ߶ in the range 0 ൑ ߶ ൑  While using the .ߨ2
Tsai-Hill failure criterion, ܺ and ܻ (see Equation 11) are assigned appropriate magnitudes 
depending of the value of ߶. For example, if గ

ଶ
൑ ߶ ൑ ܺ then ,ߨ ൌ  െܵ௅ሺିሻ

ிா஺  and ܻ ൌ ்ܵሺାሻ
ிா஺ . 

Similarly, the appropriate sign of ߪ௫௫ is chosen depending on the magnitude of ߶. The Tsai-Wu 
failure envelope on the other hand, is plotted consistent with the discussion in [17]. 
 
However, for the sake of brevity, failure loci shown in Figure 9, correspond to the case wherein 
ߠ ൌ 0, implying planar loading states given by ሼߪሽ ൌ ሼߪ௫௫ ߪ௬௬ 0ሽ. Intersection of the individual 
failure envelopes with the coordinate axes represents longitudinal and transverse strengths for 
corresponding material configurations. Specifically, intersections in positive domains represent 
tensile strengths, whereas those on the negative domains of the coordinate axes correspond to 
compressive strengths, respectively. As seen from Figure 9, introduction of the Z-yarns results in 
significant knockdowns in the in-plane strengths. Furthermore in Figures 9(a) – (d), the small 
ellipse is placed merely to indicate the location of the origin.  

 
 

DISCUSSION 
 
Previous studies on these and other materials belonging to the family of woven composites [2 – 
8,9,14,16], have shown that their mechanical behavior is intrinsically tied to the weave 
architecture. Finite element method based mechanistic studies therefore, require robust geometry 
models with the ability to capture the micro-structural architecture in great detail and sensitivity 
to adapt to changes in the same. The models developed herein while robust from the perspective 
of yielding reliable solutions, need to be refined to better approximate the path of the Z-yarns 
through the thickness of the composite.  
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One of the mechanistic effects of Z-yarns manifests itself as pronounced micro-bending 
discussed earlier. These micro-bending effects, while significant, are however, highly localized. 
In the bulk of the unit-cell, these local effects are negligible. Though the associated strain and 
stress gradients are localized, significant knockdowns in the effective properties are predicted as 
reported in Table 4 and Table 6. Therefore including the effects of Z-Crowns becomes 
imperative even in micro-mechanical analyses. By extrapolation then, Z-Crowns should be 
included in scenarios wherein inter-laminar delamination is expected. This might be the case in 
impact loading situations, since the very purpose of introducing Z-yarns in integrally woven 3D 
fabric composites is to contain delamination.  
 
The strength results obtained as part of this study are compared with those reported in [2] and 
presented in Table 7. The ‘Ref [2] – Theoretical’ strength ܵ௅ሺାሻ is greater than the Uncrowned 
Composite strength ܵ௅ሺାሻ by 16% based on the results in Table 7 
Table  7. However, the ‘Ref [2] – Experimental’ strength ܵ௅ሺାሻ is greater than the Z-Crowned 
Composite strength ܵ௅ሺାሻ by 36%. These variations could be attributed to differences in micro-
structural geometry and boundary conditions imposed in the current study to simulate uni-axial 
tensile response.  
 
Specifically, in case of the Uncrowned Composite, the volume fraction of warp and fill tows, and 
the Z-yarns was determined to be 48.65%, 37.16%, and 1.57%, respectively. However, for the Z-
Crowned Composite the above volume fractions were 37.86%, 28.91% and 3.28%, respectively. 
These significant variations in volume fractions could be ascribed to differences in the actual and 
modeled micro-structural geometry – an observation consistent with [2]. Since the volume 
fractions for the Uncrowned Composite are closer to those reported in [2], the strengths 
presented in Table 7 for this case are in better agreement with the corresponding magnitudes 
from [2]. The discrepancy in the results obtained for the Z-Crowned Composite whose modeled 
architecture is much closer to real materials indicates that one should endeavor to construct better 
geometry models rather than neglect the Z-Crowns. 
 
As seen from the results in Figure 9, the Tsai-Wu, Tsai-Hill and Maximum Stress Theory 
phenomenological failure criteria are unable to completely capture the behavior of 3D woven 
composites. These results indicate that 3D woven composites respond more like a structure 
rather than a material, when subjected to mechanical loading. Consequently, DMM techniques 
along with constrained optimization methods [18] to minimize the enclosed area of a failure 
ellipse or volume of a failure ellipsoid, are perhaps better suited to predict the strengths of 3D 
woven composites under a generalized loading state. 
 
 

CONCLUSIONS 
 
This study focused on investigating the effect of Z-yarns on the in-plane stiffness and strength of 
3D woven composites. The tow materials were modeled as transversely isotropic, whereas the 
matrix material was regarded as an isotropic entity. Failure of the tows was assumed to be 
governed by the Tsai-Hill criterion, while the maximum principal stress condition was invoked 
to check for failure of the matrix material.  
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If only the through-thickness segments of the Z-yarns are included (Uncrowned Composite), the 
elastic moduli in the longitudinal (ܧ௫௫) and transverse (ܧ௬௬) directions are knocked down by 
approximately 16% and 10%, respectively. The knockdowns are computed with respect to the 
Equivalent Laminate which is a comparable 2D cross-ply laminate comprised of stacked [0/90] 
uni-directional laminas. However, if both the 0o-oriented planar and through-thickness segments 
of Z-yarns are included (Z-Crowned Composite) then the above properties are knocked down 
approximately 30% and 24%, respectively. Similarly, the knockdown in the in-plane strengths of 
the material system investigated in this study is compared with data available in [2] and reported 
in  

 

 

 
 
 
 
 
 
 
Table 8. As expected, the most severe knockdowns are predicted for the Z-Crowned Composite. 
 
The Equivalent Laminate, Uncrowned Composite and the Z-Crowned Composite were found to 
stiffer in the longitudinal direction as compared with the transverse direction, as indicated by the 
result ܧ௫௫ ൐  ௬௬ in Table 4. Consistently, the strengths in the longitudinal and transverseܧ
directions were characterized by the same relationship since ܵ௅ሺାሻ

ிா஺ ൐ ்ܵሺାሻ
ிா஺  and ܵ௅ሺିሻ

ிா஺ ൐ ்ܵሺିሻ
ிா஺  in 

Table 6. As expected, the Equivalent Laminate is much stronger in shear as compared reasonably 
well with both Uncrowned Composite and the Z-Crowned Composite, as reported in Table 6. 
 
The mechanics approaches developed in this study are applicable to a broad range of woven 
composites [14,16]. This assertion is further attested by consistent stiffness results reported in 
Table 4 and Table 5 and strength results presented in Figure 4. Consistency of the above results 
stems from the fact that the finite element results for the Equivalent Laminate morphology are in 
excellent agreement with the comparable analytical ‘Five-Layer [0/90] Laminate’ layup.  
 
On account of the solutions reported in Figure 3, Figure 4, Table 4, and Table 5, it is reasonable 
to conclude that these models and corresponding solutions are mechanistically reliable. 
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Figure 1: Schematic representation of the weave architecture in three-dimensional (3D) woven 
composites. The above schematics depict geometric modifications of the weave patterns 
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presented in [1]. (a) Plan view. (b) Front cross-sectional view exhibiting the path of the Z-Yarns. 
(c) Details of the unit-cell modeled in this study. The two views aid in completely identifying all 
the geometry parameters used to develop 3D finite element models of the unit-cell.  
 
 

 
Figure 2: 3D solid models and dimensions of the unit-cell configurations modeled in this study. 
(a) Z-Crowned Composite exhibiting the arrangement of warp tows, fill tows and the out-of-
plane Z-Yarns, along with the corresponding Principal Material Directions (PMDs). (b) 
Uncrowned Composite exhibiting PMDs of fill tows. (c) Equivalent Laminate. (d) Generalized 
unit-cell displaying the overall dimensions and the global XYZ coordinate system.  
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Figure 3: Deformed configurations of the unit-cells of the materials modeled in this study. The 
first, second and third column of meshes correspond to deformed configurations under macro-
level unit-strains ߝ௫ ൌ ௬ߝ ,1 ൌ ௫௬ߛ ,1 ൌ 1, respectively. (a) Z-Crowned Composite. For ߝ௫ ൌ 1, 
merely the top half of the unit-cell is shown in order to highlight the severe micro-bending of the 
Z-yarns. (b) Uncrowned Composite.  
 

 
Figure 4: In-plane strengths of the ‘Five-Layer [0/90] Laminate’, Equivalent Laminate, 
Uncrowned Composite and the Z-Crowned Composite, under different loading cases. The 
strength of the ‘Five-Layer [0/90] Laminate’ was predicted based on Classical Lamination 
Theory, whereas, the strengths of the other material configurations were predicted in accordance 
with the One Element failure threshold, for individual loading cases. 
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Figure 5: Detailed inspection of the load factors of 15% of the elements in individual finite 
element meshes sorted in ascending order. (a) Z-Crowned composite. (b) Uncrowned composite.  
 

Figure 6: Variation in the planar strengths of the three materials modeled in this study. The 
dashed horizontal lines represent the strengths of the Equivalent Laminate for individual loading 
cases. (a) Z-Crowned composite. (b) Uncrowned composite. These results were obtained based 
on choosing load factors corresponding to different levels of allowable element failure as shown 
in Figure 5. 
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Figure 7: Strength knockdowns in the equivalent laminate, uncrowned composite and the Z-
crowned composite based on different levels of allowable element failure. (a) One Element 
failure condition wherein the entire composite is assumed to have failed when the first element 
failure is encountered – most conservative threshold. (b) One percent of the elements are allowed 
to fail.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: Representation of combined in-plane loading as functions of the Euler loading angles ߶ 
and ߠ. 
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Figure 9: Failure loci and Direct Micro-Mechanics (DMM) based individual failure data points. 
(a) Z-Crowned Composite. (b) Uncrowned Composite. (c) Equivalent Laminate. (d) The DMM 
failure loci for the Z-Crowned Composite, Uncrowned Composite, and the Equivalent Laminate. 
With the introduction of the Z-yarns, the failure envelopes shrink progressively, indicating 
severe knockdowns in strengths.  
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Table 1: Dimensions of the tows and yarns employed to develop 3D models of the unit-cell of 
the weave architecture shown in Figure 1.  The subscripts ‘݂’, ‘ݓ’, and ‘ݖ’ indicate fill tows, 
warp tows and Z-yarns, respectively. The above dimensions were computed based on the work in 
[2]. All dimensions are in mm. 
 

Geometry Parameters 
݄௙ ݄௪  ݄௭  ݓ௙  ݓ௪  ݓ௭  L W H 

0.292 0.637 0.292 1.514 4.120 0.910 3.320 5.028 2.734 
 
 
Table 2: Periodic boundary conditions applied on the unit-cells shown in Figure 2 for simulating 
in-plane unit-strain loading cases [14]. 
 

Load Case  u(a/2,y,z) – 
u(-a/2,y,z) 

v(a/2,y,z) – 
v(-a/2,y,z) 

w(a/2,y,z) – 
w(-a/2,y,z) 

u(x,b/2,z) – 
u(x,-b/2,z) 

v(x,b/2,z) – 
v(x,-b/2,z) 

w(x,b/2,z) – 
w(x,-b/2,z) 

௫ߝ
ெ

ൌ 1 a 0 0 0 0 0 

௬ߝ
ெ

ൌ 1 
0 0 0 0 b 0 

௫௬ߛ
ெ

ൌ 1 
0 a/2 0 b/2 0 0 

 
 
Table 3: Material properties of the transversely isotropic warp tows, fill tows and the Z-yarns [9]. 
 

All elastic and shear moduli are reported in GPa. 
 ଵଷܩ ଶଷܩ ଵଶܩ  ଵଷߥ  ଶଷߥ  ଵଶߥ ଷଷܧ ଶଶܧ ଵଵܧ

53.424 10.684 10.684 0.053 0.449 0.265 4.183 3.688 4.183 
All strengths are reported in MPa. 

ܵ௅
ା   ܵ௅

ି   ்ܵ
ା

 ்ܵ
ି

 ܵ௅்
1380 770 47 137 50 
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Table 4: The extensional stiffness matrices and effective elastic properties of 3D woven 
composites. Owing to the symmetry of the weave architecture about the mid-plane [B] ≈ [0]. 
Clearly the addition of Z-yarns results in significant knockdowns in the properties. 
 

Weave 
Architecture 

[A]  
(MPa-m) 

Exx 
(GPa) 

Eyy 
(GPa) νxy νyx 

Gxy 
(GPa) 

Finite Element Solutions 

Z-Crowned 
Composite ൥

69.61 2.57 0.00
2.57 57.61 0.00
0.00 0.00 8.61

൩  25.15 20.81 0.0447 0.0370 3.11 

Uncrowned  
Composite ൥

65.66 1.75 0.00
1.75 54.91 0.00
0.00 0.00 7.60

൩ 30.51 25.52 0.0318 0.0266 3.35 

Equivalent 
Laminate ൥

77.60 1.22 0.00
1.22 60.50 0.00
0.00 0.00 8.99

൩ 36.10 28.13 0.0202 0.0157 4.183 

Analytical Solution 

Five-Layer 
[0/90] 

Laminate 
൥
77.47 1.21 0.00
1.21 60.45 0.00
0.00 0.00 8.99

൩ 36.02 28.10 0.0202 0.0157 4.183 

 
Table 5: Comparison of longitudinal (Exx) and transverse (Eyy) elastic moduli reported in [2,9] 
with corresponding results obtained in the present study. The predictions obtained from the 
current analyses are in reasonably good agreement with published data within the realm of 
numerical uncertainty. 
 

Model Exx 
(GPa) 

Eyy 
(GPa) 

࢞࢞ࡱ
 ࢒ࢇ࢚࢔ࢋ࢓࢏࢘ࢋ࢖࢞ࡱ

(GPa) 
࢟࢟ࡱ

࢒ࢇ࢚࢔ࢋ࢓࢏࢘ࢋ࢖࢞ࡱ

(GPa) 
Ref [2] 27.31 25.70 24.68 20.75 
Ref [9] 27.90 26.20 

NA 
Uncrowned 
Composite 30.51 25.52 

Z-Crowned 
Composite 25.15 20.81 



23 
 

Table 6: Predicted in-plane longitudinal, transverse and shear strengths for the three material 
configurations investigated in this study. The results indicate significant increases in predicted 
strengths for the Uncrowned Composite and the Z-Crowned Composite as the failure threshold is 
increased from the One Element level to the 1% allowable element failure condition. The 
predicted strengths for the Equivalent Laminate do not change with failure threshold as discussed 
previously. 
 

Failure 
Threshold ܵ௅ሺାሻ

ிா஺   (MPa) ܵ௅ሺିሻ
ிா஺  (MPa) ்ܵሺାሻ

ிா஺  (MPa) ்ܵሺିሻ
ிா஺  (MPa) ܵ௅்

ிா஺ (MPa) 

Z-Crowned Composite 
One Element 57.51 155.73 71.58 203.61 23.24 

1 Percent 
Elements 89.86 254.50 89.82 257.17 27.40 

% Increase 56.25 63.42 25.48 26.30 17.90 
Uncrowned Composite 

One Element 111.70 325.40 87.65 243.36 25.35 
1 Percent 
Elements 126.86 368.29 102.06 292.49 29.62 

% Increase 13.57 13.18 16.44 20.18 16.84 
Equivalent Laminate 

One Element 158.52 462.00 123.70 360.44 50.00 
1 Percent 
Elements 158.52 462.00 123.70 360.44 50.00 

 
 
Table 7: Comparison of longitudinal and transverse tensile strengths of the 3D woven 
composites studied in [2] and the present work. The results from [2] reported herein are based on 
the initial failure strain ߝ௫

௜் ൌ 0.554%. 
 

Model ࡸࡿሺାሻ (MPa) ࢀࡿሺାሻ (MPa) 
Ref [2] – Theoretical 151.00 NA 

Ref [2] – Experimental 140.00 NA 
Uncrowned Composite 126.86 102.06 
Z-Crowned Composite 89.86 89.82 
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Table 8: The knockdown in the predicted strength of the 3D woven composite studied in this 
work. The individual strength magnitudes of the Uncrowned Composite and Z-Crowned 
Composite for comparison with the Equivalent Laminate are based on the 1 Percent element 
failure condition reported in Table 6. The ‘Ref [2] – Theoretical’ and ‘Ref [2] – Experimental’ 
strength magnitudes for comparison with the Equivalent Laminate are given in  
Table 7  
 

Percentage Knockdown 
Model ࡸࡿሺାሻ   ࡸࡿሺିሻ    ࢀࡿሺାሻ    ࢀࡿሺିሻ    ࢀࡸࡿ    

Ref [2] – 
Theoretical 5% NA NA NA NA 

Ref [2] – 
Experimental 12% NA NA NA NA 

Uncrowned 
Composite 20% 20% 18% 19% 41% 

Z-Crowned 
Composite 43.31% 45% 28% 29% 45% 

 

 


