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INTRODUCTION:  

 

Computing the arctangent is needed in many applied fields, for example, measuring 

distance on the ellipsoid for navigation, calculating phase in digital signal processing and 

determining angles in computer graphics. Each of these applications requires that the 

simple definition of the tangent on a right triangle be inverted. However, this is difficult 

as the arctangent exhibits a highly non-linear relationship with angle. Methods to 

calculate the arctangent are usually based upon summation of a Taylor series.  This 

summation is inconvenient because the series converges slowly outside of a narrow range 

(x<<1). The conventional approach performs range reduction and attempts to shorten the 

series using minimax methods. Nevertheless, for high accuracy, many terms with lengthy 

coefficients must be summed (Hart et al, 1968 and Muller, 2005). Even in the last 10 

years, there has been only marginal progress on computing arctan. Medina found a 

somewhat shorter series using Hermite polynomials (Medina, 2006). Other workers have 

sidestepped the convergence issue by deriving the arctangent from the arcsine 

(Markstein, 2005) or using brute force computer power to iterate to the solution using 

either the Cordic (Muller, 2005) or KDF9 methods (Findlay, 1964). Recent work for 

situations with thousands of measurements that need to be efficiently inverted has 

focused on low degree but inaccurate formulas covering the entire range [0,1] with just a 

few simple coefficients (Rajan et al, 2006). Some of these formulas try to avoid division 

which is a costly instruction in a CPU. In summary, previous methods have not been 

entirely satisfactory and the atan2 function as implemented in a computer library is slow 

and expensive. 
 

It is the purpose of this note to introduce a new approach for finding highly accurate 

approximations for arctan(1/a) valid for the entire range -∞<a<+∞ suited for computer 

sub-routines. We also demonstrate a multipoint form of range reduction that enables us to 

calculate any arctangent starting from a nearby argument for which the arctangent is 

known. 

 



 

NEW ARCTAN APPROXIMATION 

 

Although very accurate values for arctan(x) expressed in fractions of π are known for 

x=0, ±1/sqrt(3), ±1, and ±sqrt(3) , other points  in the range -∞<x<∞ rely on tables or 

computer sub-routines based on the basic series expansion 
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and the identity 

 

                                       arctan(x)+arctan(1/x)=π/2                                                    (2) 

                         

 

Since arctan(x) is an odd function one has arctan(-x)= -arctan(x) and so one needs to only 

find values for x>0 to know the value of arctan(x) over the entire range [-∞,∞]. 

The problem with the series expansion shown in (1) is that it converges very slowly 

because it lacks a factorial term in the denominator of the series. This makes it difficult to 

obtain high precision for arbitrary values of x with standard computer sub-routines.  

 

We show here a new approach to obtaining very accurate approximations to arctan (x) 

based on an integral evaluation method involving Legendre polynomials. The procedure, 

already outlined earlier (Kurzweg, 2009 and Kurzweg, 2011), is to start with the basic 

definition   

                         F(a)=(1/a)arctan(1/a)= ∫
=

+

1

0

22

t
at

dt                       (3) 

                        
                                                                                                                              

 

and then look at the  related integral 
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Here P2n(t) represents the even Legendre Polynomials which can be defined by the 

Rodrigues Formula as 
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This differential expansion clearly shows that the P2n(t) polynomials are 2nd order even 

polynomials in t and that, when they are integrated over  the half range 0<t<1, their 

integral always vanishes. They have an oscillatory character with exactly n zeros in [0,1]. 

It stands to reason that the integral I(n,a) should also approach zero when both  a and n 

are large.  

 

If one now expands the quotient in (4), one finds that 
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Here Q(n,a,t) is the polynomial obtained by dividing P2n(t) by t
2
+a

2 
after omitting the 

term M(n,a)/(t
2
+a

2
) . We call M(n,a) the remainder term. Next, a simple integration, 

produces the identity  
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with N(n,a) and M(n,a) being even polynomials in ‘a’ for fixed n. If one sets I(n,a) to 

zero, the following new approximation for arctan is found 
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This result shows that the function F(a) is approximated by the ratio of two even 

polynomials in ’a’ for fixed n. The result is reminiscent of a Pade approximate (Mathews, 

2003), but as we shall see is far easier to implement and is obtained without the usual 

complications of evaluating a large set of algebraic equations. The order of our 

approximation is determined by the value of n employed, with the larger values giving 

more accurate results. 

 

Here are the resulting approximations for n=1 through n=4: 
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The numerator in these approximations contains only even powers of ‘a’ up to the 

2(n-1)th power while the denominator is a polynomial in ‘a’ containing only even powers 

up to 2n 

 

To get a feel for the increasing accuracy of F(a) with increasing n we have made the 

following plot 

 

 

 

     Fig.1-Approximations for arctan(1/a) for n=1, 2, and 3 
 

 
 

It is seen that accuracy improves with increasing n and a. The largest departures from the 

exact value of arctan(1/a) occur for a<1.  At a=1 and a=5 we find the approximations to 

arctan(1)=π/4 and  arctan(1/5) for n= 2, 4, and 8 are as shown in Table I. 

 

TableI -Values for the 1F(1) and 5F(5) approximations with increasing n 

 

n 1F(1)=arctan(1) 5F(5)=arctan(1/5) 

2 0.78 0.19739555 



4 0.78539 0.1973955598498807 

8 0.78539816339 0.1973955598498807583700497651947 

exact 0.7853981633974483096156 0.19739555984988075837004976519479029 

 

Here the numbers have been terminated at the point where a departure from the exact 

value first occurs. The approximation for the case a=5 is excellent producing a 32 digit 

accuracy for n=8.  The fact that the approximations are not very good when a<<1 comes 

from the fact that in the original integral I(n,a) the denominator t
2
+a

2
 varies appreciably 

across the interval 0<t<1 when a is small. This, however, does not preclude finding 

excellent estimates for arctan(1/a) when a<1 , if  one makes use of  formula (2).We will 

demonstrate this procedure in the next section.  

 

We also wish to point out that formulas involving arctangents with large ‘a’ are nicely 

evaluated directly by the present approximations aF(a). Take the case of the interesting 

four term arctan formula for π found by us several decades ago. It reads 
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Using an n=26 approximation, yields the 99 digit accurate result- 

 

π=3.1415926535897932384626433832795028841971693993751058209749445923078      

164062862089986280348253421170 

 

 

 

 

EVALUATION OF ARCTAN(1/a) FOR 0<a<1 

 
 

As seen in Fig.1, our arctan approximations, involving the quotient of two polynomials, 

depart from the standard arctan(1/a) result in 0<a<1, with this departure becoming most 

noticeable when n becomes smaller. To get accurate approximations for a<1, we use 

equation (2) which is just a special case of the general arctan relation                                                                                                                       
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which is valid for any ∆a . In terms of ‘a’ , equation (2) reads 
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Thus we can approximate all arctangents in 0<a<1 by the relation- 
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To demonstrate how this approximation is used, consider arctan(1/0.55) where 

a=11/20<1. Substituting into (13) and carrying out the calculation for n=8, produces the 

17 digit accurate result- 

 

                             67035790679531158.1)
11

20
arctan( ≈                                 (14) 

 

Alternatively one could use (11) to first break things up into a three term identity and 

then evaluate two different Fs as shown here-  
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This time the n=8 approximation yields the 26 digit accurate result- 

 

                 0439667035791900679531158.1)
11

20
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The higher accuracy in this second case arises from the fact that one is dealing with larger 

values of a in the approximations. That is, 11/20<3<51/2. 

 

 

We are now in a position to obtain highly accurate approximations to the arctangent 

functions over the entire range 0<a<∞. Arctangent values for negative values of ‘a’ are 

also recoverable since arctan(1/a) is an odd function. The process can be automated into a 

simple computer routine using a canned symbolic mathematics program such as MAPLE. 

We have used a simple MAPLE program to obtain approximations for arctan(1/a) for 

a=1/2, 1/4, 1/8, and 1/16 using n=10. The results are recorded in Table II 

 

 

 

TableII  -Approximations to arctan(1/a) for 1/a=2, 4, 8, and 16 using a MAPLE 

program generated from eq. (13) when n=10. 

 

(1/a) arctan(1/a) ≈π/2-(1/a)F(1/a) 

2 1.107148717794090503017065 

4 1.325817663668032465059239210428475631 

8 1.446441332248135184199966842475880416525414507917 

16 1.508377516798939270757342578654246328492310811890053715879944 

 



Each result has been terminated at the point where a departure from the exact value first 

occurs. The accuracy is impressive. The accuracy of the approximations for fixed n is 

seen to increase with increasing values of 1/a. Note that in all our calculations thus far, 

the only inputs which have been used are the known values of arctan(∞)=π/2 and 

arctan(1) =π/4 .  

 

Finally we show how to make highly accurate arctan approximations using multipoint 

range reduction. These approximations can use just n=3 or n=4 providing we start from a 

nearby argument where the arctangent has been previously calculated. A “ladder” 

procedure (see appendix) can generate arctangent values at a series of steps starting from 

a known point such as arctan(1)=π/4.  If these steps are correctly spaced then we can 

control the accuracy of our approximation because we know in advance the minimum 

argument for F using equation 19. 

 

For example, if we generate arctangents at the steps 0.95,0.85,0.75…0.05 then these steps 

can be used to define ranges (0.9,1),(0.8,0.9),(0.7,0.8)…(0,0.1). Then when, for example,  

we are presented with an argument of 0.9 we may use the second range to calculate 

arctan(1/0.9) from the previously calculated value of arctan(1/0.85) as follows- 

 

)]1)05.085.0(85.0/((05.0arctan[)85.0/1arctan()9.0/1arctan( ++−=                     (17) 

 

Or the equivalent approximation 
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Using an argument of 0.1 and the arctangent at 0.05, and employing the generic form- 
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the present approximation shows that the minimum F argument will be 20.1 using these 

10 ranges. A computer sub-routine implementing equation (19) and using arctangents 

found at the 10 steps (0.05,0.15,0.25,…0.95) achieves accuracy better than 1.E-30 over 

the range [-infinity, infinity] using the n=4 approximation. 

 

 

CONCLUDING REMARKS: We have found a new approximation technique for the 

arctan function which can obtain highly accurate values for arctan(1/a) over the entire 

range 0<a<∞. Some care must be taken when 0<a<1, but this difficulty can be readily 

overcome by using an arctan difference formula. The numerical accuracy is found to be 

remarkable especially when using the higher n approximations. A ninety nine digit 

accurate approximation for π based on a four term arctan formula has been obtained for 

n=26.  Excellent approximations for arctan(1/2
k
) are also found via an easily employable 



computer routine. Incorporation of the type of polynomial quotient approximation 

method introduced here should also find applications for built-in computer routines for 

other elementary functions.   

 

 

APPENDIX:  Procedure Ladder generates arctangents by iterating towards either a target 

argument or a series of equally spaced arguments (steps)  in the range [0,1]. Starting from 1 with 

known arctangent π/4, it calculates a new result using equation (19) and the result from the previous 

loop and continues until it reaches each step and prints its result. The calculated values of the 

arctangent function at the steps can be used in code to calculate arctangents using equation (19) 

without iteration as shown in eq. (17). 

 
Procedure Ladder(nsteps integer default 10, target number default 0.0) 
 

--Beginning at arctan(1) = π/4   
--Step towards various goals (0.95,0.85,0.75,..0.05) using equation (19): 
 
--     arctan(1/(a+ ∆a) = arctan(1/a) – aa*F(aa) where aa = ((a(a+ ∆a)+1)/ ∆a     
 
-- call these: result  = LH arctan   - RH term 
   
   a := 1.;                                    -- start from "a" is 1 

   LH_arctan = π/4;                            -- and set its known arctan 
   stepsize = 1.0/nsteps;                      -- stepsize will be 0.1 
   next_goal = a – stepsize*0.5;               -- we want to find arctan(0.95) 
 
   if target <> 0.0 then 
     next_goal = target;                       -- or for some specified argument 
   end if; 
 
   gap = 1/a - next_goal;                      -- gap to next goal 
   ∆a = orig_ ∆a = stepsize*0.1;                -- set small delta to add to "a" 
 
   For ii in 1..40000 Loop                      -- loop towards the next goal  
      aa :=( a*(a+ ∆a)+1.)/∆a;                   -- setup argument for RH term 
 
   -- At loop 1, this is the computation:  a=1, ∆a = 0.01 and aa = 201 
 

   -- arctan(1/1.01) = arctan(1) - arctan(0.01/(1(1.01) +1) ≅≅≅≅ π/4 - 201F(201,n=4) 
 
      result := LH_arctan – aa*F(aa,n=4);       -- F function is equation 9 
      a = a + ∆a;                               -- move 1/a towards next step 
       
   -- Are we close enough to our goal? 
 
      if (1.0/a) - next_goal <= gap and gap > 1.E-35 then 
 
        gap = ABS(1.0/a - next_goal);           -- keep track of distance to goal 
        ∆a = min(gap, ∆a);                       -- make ∆a smaller as we get close 
        best_result = result;                   -- save our best result before next goal 
         
   -- When we get close enough, print best result  
  
      else 
         print next_goal, best_result           -- 0.95, .7597627548757.. on 1st iteration 
 
         if target = 0.0 then                   -- if a series of steps desired then 
           next_goal = next_goal - stepsize;    -- reset next goal to 0.85, 0.75 .. 
         end if; 
         gap = 1.;                              -- reset gap to find next step 
         ∆a = orig_ ∆a;                          -- and delta to a larger value 
      end if; 
 
      LH_arctan = result;                       -- reuse result in the next iteration 
 
   End Loop; 
   End Ladder; 

 



    
    
    
    
    
    
    
    
    
Some results from procedure Ladder:Some results from procedure Ladder:Some results from procedure Ladder:Some results from procedure Ladder:    
    
        X          Arctangent                                   error   loopX          Arctangent                                   error   loopX          Arctangent                                   error   loopX          Arctangent                                   error   loop    
    
    .95.95.95.95                        .75976275487577.75976275487577.75976275487577.759762754875770828922961195399981824        1.90E0828922961195399981824        1.90E0828922961195399981824        1.90E0828922961195399981824        1.90E----38   38   38   38           38383838    
    .85.85.85.85                        .70449406424221.70449406424221.70449406424221.704494064242217716657480340781996259        1.15E7716657480340781996259        1.15E7716657480340781996259        1.15E7716657480340781996259        1.15E----38  38  38  38          110110110110    
    .75.75.75.75                        .64350110879328.64350110879328.64350110879328.643501108793284386802809228717322        4386802809228717322        4386802809228717322        4386802809228717322                    4444.30E.30E.30E.30E----35  35  35  35          217217217217    
    .65.65.65.65                        .57637522059118.57637522059118.57637522059118.576375220591183680227570478393770051       3680227570478393770051       3680227570478393770051       3680227570478393770051       ----7.00E7.00E7.00E7.00E----39 39 39 39             375375375375    
    .55.55.55.55                        .5028432109.5028432109.5028432109.502843210927860827330882029245277562      27860827330882029245277562      27860827330882029245277562      27860827330882029245277562          ----2.54E2.54E2.54E2.54E----38 38 38 38             612612612612    
    .45.45.45.45                        .42285392613294.42285392613294.42285392613294.422853926132940712966482790981141980       0712966482790981141980       0712966482790981141980       0712966482790981141980       ----1.82E1.82E1.82E1.82E----38  38  38  38          985985985985    
    .35.35.35.35                        .33667481938672.33667481938672.33667481938672.3366748193867271813966986313417664          1.48E71813966986313417664          1.48E71813966986313417664          1.48E71813966986313417664          1.48E----37  37  37  37      1623162316231623    
    .25.25.25.25                        .24497866312686.24497866312686.24497866312686.244978663126864154172082481211275819       4154172082481211275819       4154172082481211275819       4154172082481211275819       ----4.28E4.28E4.28E4.28E----38  38  38  38      2900290029002900    
    .15.15.15.15                        .148889947609497250586530391655867290.148889947609497250586530391655867290.148889947609497250586530391655867290.148889947609497250586530391655867290              ----3.95E3.95E3.95E3.95E----38  38  38  38      6460646064606460    
    .05.05.05.05                        .04995839572194.04995839572194.04995839572194.04995839572194276141000628703484489        276141000628703484489        276141000628703484489        276141000628703484489        ----4.62E4.62E4.62E4.62E----38  38  38  38      37678376783767837678    
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