
                                  CONIC SECTIONS 
 
 
One of the most important areas of analytic geometry involves the concept of 
conic sections. These represent 2d curves formed by looking at the intersection 
of a transparent cone by a plane tilted at various angles with respect to the cone 
axis. The resultant intersections can produce circles, ellipses, parabolas, and 
hyperbolas. Collectively they are referred to as conic sections. We want here to 
review their properties.  
 
Our starting point is the following definition sketch-        

 
The construction of a conic section starts with drawing a horizontal x axis and a 
vertical  y axis termed the directrix. One next chooses a point Q(a,0] on the x axis 
termed the focus. If we then sketch a 2D curve represented by a heavy thick 
curve in the x-y plane and demand that this curve have the property that any 
point P(x,y) on it have the ratio r/x be a constant, we will have the definition of a 
conic section. Calling this ratio the eccentricity of the curve, we find- 
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On solving for r and x we get the polar coordinate and Cartesian versions of a 
conic section, namely,- 
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Looking at the Cartesian version, one has an ellipse if e<1, a parabola if e=1, and 
a hyperbola when e>1. A circle is a special form of an ellipse with zero 
eccentricity (e=0).  
 
We look at all three finite e cases starting with the ellipse. First one converts the 
Cartesian form of the conic section into the more recognizable form- 
 

                     
)1(

1
)()(

)(
22

2

2

2

e

a
bwhere

abe

y

eb

bx





 

 
Ellipse: Here e<1 so that b>1. This means we have a standard shifted ellipse of 
the form 
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which is centered on [b,0] and has a semi-major axis A=eb=ea/(1-e2) and semi-
minor axis  
B =e sqrt(ab)= ea/sqrt(1-e2). If we take the quotient  sqrt(A2-B2)/A, we find this 
ratio equals- 
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Taking a=1 and e=1/sqrt(2) ,we have A=sqrt(2) , B=1, and b=2 to yield the graph- 
 

 
The directrix  remains the y axis and the focus of the ellipse is located at [1,0]. 
The point on the ellipse closest to the focus is the perigee and the point furthest 
away is termed the apogee. This ellipse has a second focus located at [3,0]. An 



interesting property of ellipses is that the total distance from the first focus to any 
point on the ellipse and then the reflection onto the second focus is a constant 
equal to twice the semi-major axis A The semi-minor axis is given by the above 
expression as B=A sqrt(1-e2). This equal time-travel property has found important 
applications in whispering galleries, hydrogen bomb triggers, and kidney stone 
removal. Elliptical trajectories of this type also have a very important application 
in connection with planetary trajectories about the sun. In that  application  one 
prefers the use of the following polar representation - 
 

                                          1
)cos(1




 ewith
e

ea
r


 

 
From it one sees at once that the distance from the focus to the left intersection 
is the length to the perigee rp=ea/(1+e)  while the distance from the first focus to 
the right intersection at the apogee equals ra=ea/(1-e). The sum rp+ra=2A. 
 
 
Parabola: Here e=1 so that the conic section takes on the form of the shifted 
parabola- 
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A graph of this parabola for a=2 looks like this- 
   

        
    



An important property of this conic is that all incoming light rays parallel to the x 
axis will focus at the focal point at [2,0]. This focusing principle lies behind all 
parabolic reflectors be they used for receivers such as reflector telescopes  or 
sending out a parallel beam of light such as in search lights.  
 
Hyperbola: Here e>1 so that b<0. So the conic section has the form of the 
hyperbola- 
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A graph of this hyperbola for the special case of a=3 and e=2 follows- 
 
         
 
 

 
 
Note here that the hyperbola center is at x=-1 and y=0 while the focus for the 
right branch lies at [3,0]. We can calculate the curves perpendicular to these 
branches by noting they must have the slope- 
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and thus form the orthogonal curves- 
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, where the constant is adjusted to match a point on the hyperbola. In certain 
incompressible and inviscid 2D fluid flows one encounters flows having 
hyperbolic  streamline shapes of this type.   
 
 


