USE OF A DIOPHANTINE EQUATION TO FACTOR ANY SEMI-PRIME

Several years ago we showed on this web page how one can factor the semi-prime $\mathrm{N}=\mathrm{pq}$ using the equation-

$$
[p, q]=S-s q r t\left(S^{\wedge} 2-N\right)
$$

, where $S=(p+q) / 2=(\sigma(N)-N-1) / 2$ and $\sigma(N)$ is the sigma function of number theory.
The approach works well as long as $\mathrm{N}=\mathrm{pq}$ is less than about forty digits long. Within this limit the advanced math programs Mathematica or Maple yield closed form values for $\sigma(N)$. For $N s$ in excess of these lengths the finding of $\sigma(N)$ becomes cumbersome and thus impractical for still larger semi-primes such as the ones encountered in cyber-security. We wish here to extend the factoring process to large semi-primes by a new technique involving a new function x heretofore recognized.

We start by noting that if $p=q$, then both primes equal sqrt(N). Since both p and q are odd integers sqrt(N) must be modified to integer form. We let-

$$
R \text { =nearest integer above sqrt(} N \text {) }
$$

This suggests the new definition-

$$
2(R+x)=p+N / p
$$

On rewriting we get-

$$
P^{\wedge} 2-2 p(R+x)+N=0
$$

On solving we nave-

$$
p=(R+x)-\operatorname{sqrt}\left((R+x)^{\wedge} 2-N\right.
$$

For p to be integer as well as x and R, we arrive at the new non-linear Diophantine equation-

$$
(R+x)^{\wedge} 2-N=y^{\wedge}
$$

, with y also a positive integer. Once this has been solved by the one line program-

$$
\text { for } x \text { from } 0 \text { to b do(\{x,sqrt((x+R)^2-N)\})od }
$$

we can recover both p and q at once. Typically, when x is an integer a lot smaller than R, there will be only a small number of trials involved in finding both integer x and y. When x gets larger it is best to use the re-written Diophantine form-

$$
y^{\wedge} 2=\left(R^{\wedge} 2-N\right)+2 x R+x^{\wedge} 2
$$

and to note that typically $\mathbf{2 x R}$ is large compared to both ($R^{\wedge} \mathbf{2}-N$) and $x^{\wedge} \mathbf{2}$.So that $y^{\wedge} \mathbf{2}$ equals an integer a little above $\mathbf{2 x R}$.

Let us demonstrate the new factoring approach with $N=2201$ where $R=47$. Solving we find $[x$, $y]=[4,20]$. So $p=(R+x-y=31$ and $q=N / p=71$. The speed with which the result was obtained is impressive requiring only four trails.

Take next the larger six digit long semi-prime $\mathrm{N}=455839$. Here $\mathrm{R}=676$. Running the program from $x=0$ to $x=8$ we obtain the following table-

This result can also be obtained by the Lenstra elliptic curve method but only for at a considerable amount of extra work.

Finally let is consider the nine digit long semi-prime-

$$
N:=137703491 \quad \text { where } \quad R=11735
$$

Here it takes a total of 919 trials, starting with $x=1$, to arrive at $[x, y]=[919,4735]$. From this solution we deduce that-

$$
p=R+x-y=7919 \text { and } q=N / p=17389
$$

Notice the rapid increase in the value of \mathbf{x} as \mathbf{N} gets larger than about eight digits. Under those conditions it might be a good idea to start the search at $\mathrm{x}=0.1^{*} \mathrm{R}=1174$ and then search in the neighborhood. At trial $x=-255$ you will find your answer.

We have shown that the semi-prime $N=p q$ can be factored into its two prime components by solving the Diophantine Equation $(R+x)^{\wedge} \mathbf{2 - N}=y^{\wedge} \mathbf{2}$, where R is the first integer value above $\operatorname{sqrt}(N)$. Once the integer values of $[x, y]$ have been found, the values of p and q follow from-

$$
p=(R+x)-y \quad \text { and } \quad q=N / p \quad \text { with } p<q
$$

The value of x increases with increasing N but typically stays below about ten percent of R.

U.H.Kurzweg

Gainesville, Florida
September 30, 2023

