PROPERTIES OF THE DIVISOR FUNCTION SIGMA

One of the more important numbers encountered in number theory is the divisor function designated as $\sigma(\mathrm{N})$ and equal to the sum of all its divisors of N including 1 and N . It is also related to our own number fraction $f(N)$ via the equality-

$$
\sigma(N)=1+N[1+f(N)]
$$

It is the purpose of this note to find and discuss the properties of $\sigma(\mathrm{N})$.
We begin by looking at the special forms of N when this number is a prime. We already know from previous notes on this page that $f(p)$ is always zero for any prime p. Hence it must be true that $\sigma(p)=1+p$. From it follows that-

$$
\begin{aligned}
& \sigma\left(p^{\wedge} 2\right)=1+p+p^{\wedge} 2 \\
& \sigma\left(p^{\wedge} 3\right)=1+p+p^{\wedge} 2+p^{\wedge} 3 \\
& \sigma\left(p^{\wedge} 4\right)=1+p+p^{\wedge} 2+p^{\wedge} 3+p^{\wedge} 4
\end{aligned}
$$

This means-

$$
\sigma\left(\mathrm{p}^{\wedge} \mathrm{n}\right)=\sum_{k=0}^{n} p^{\wedge} k=\left[\mathrm{p}^{\wedge}(\mathrm{n}+1)-1\right] /(\mathrm{p}-1)
$$

We have used the geometric series to get the right hand side of this last equality.
Let us test things out for the prime $\mathrm{p}=127$ with $\mathrm{n}=2$. Here we have-

$$
\sigma(16129)=\left(127^{\wedge} 3-1\right) /(127-1)=16257
$$

You will notice that sigma(p) lies just a little above p. This is to be expected as p gets large. Consider next the product-

$$
\mathrm{F}=\sigma\left(\mathrm{p}^{\wedge} \mathrm{n}\right)^{*} \sigma\left(\mathrm{q}^{\wedge} \mathrm{m}\right)=\sigma\left[p^{\wedge} n^{*} q^{\wedge} \mathrm{m}\right]
$$

, where p and q are primes and n and m positive integers. We find, for $p=2, q=3, n=2$ and $m=1$, that-

$$
\mathrm{F}=\sigma\left(2^{\wedge} 2\right)^{*} \sigma\left(3^{\wedge} 1\right)=\sigma\left(4^{*} 3\right)=28 .
$$

Next we see what are the values of sigma for any integer not just primes. To get the value of $\sigma(\mathrm{N})$ we use the identity that any integer can be expressed as-

$$
N=p 1^{\wedge} a^{*} p 2^{\wedge} b^{*} p 3^{\wedge} c^{*} \ldots
$$

, where a, b, and c are integers and p are primes. So we get-

$$
\sigma(N)=\sigma\left(p 1^{\wedge} a\right)^{*} \sigma\left(p 2^{\wedge} b\right)^{*} \sigma\left(p 3^{\wedge} c\right) \ldots
$$

This means we need to only find sigma ($p n^{\wedge} \mathrm{k}$) for different n and ks . Let us demonstrate with the composite number $\mathrm{N}=1459=2^{\wedge} 1^{*} 3^{\wedge} 6$. We have-

$$
\sigma(1459)=\sigma\left(2^{\wedge} 1\right)^{*} \sigma\left(3^{\wedge} 6\right)=3^{*} 1093=3279
$$

Another even larger composite number is $\mathrm{N}=13243=17^{*} 19 * 41$. It has-

$$
\sigma(\mathrm{N})=18 * 20 * 42=15120
$$

So we can find $\sigma(N)$ for any integer by evaluating the products $\sigma\left(\mathrm{pn}^{\wedge} \mathrm{a}\right)$.Typically the number of such products will be relatively small(less than five or so). Thus N=47821436=2^2*13*491*1873 yields

$$
\sigma(N)=7 * 14 * 492 * 1874=90356734
$$

Finally we point out that once $\sigma(\mathrm{N})$ is known, we can write down at once the value of the number fraction. The relation is-

$$
f(N)=[\sigma(N)-N-1] / N
$$

The advantage of $f(N)$ over $\sigma(N)$ is that $f(N)$ is a relatively small fraction near unity compared to a large integer for $\sigma(N$. Also $f(p)$ will always be zero.
U.H.Kurzweg

August 3, 2023
Gainesville, Florida

