$$
\text { Evaluation of } \mathrm{Y}(\mathrm{n})=\prod_{k=1}^{n} k^{\wedge}(n+1-k)
$$

Recently, while evaluating the function $f(n)=s i g m a(n)-n-1) / n$, we came up with a new point function $J(n)$ defined as-

$$
\mathrm{J}(\mathrm{n})=\prod_{k=1}^{n} \operatorname{ithprime}(k)^{\wedge} \operatorname{ithprime}(n+1-k)
$$

In studying this rather complicated expansion, we now realize that there is a much simpler related expression-

$$
\mathrm{Y}(\mathrm{n})=\prod_{k=1}^{n} k^{\wedge}(n+1-k)
$$

Evaluating this new function for $n=1,2,3,4$ and 5 produces-

$$
\begin{aligned}
& Y(1)=1 \\
& Y(2)=2 \\
& Y(3)=12 \\
& Y(4)=288 \\
& Y(5)=34560
\end{aligned}
$$

It is seen to be a rapidly increasing sequence of n with Y (inf.)=infinity. We wish in this note to examine the most important properties of this point function.

One notices first of all that-

$$
Y(n)=n!Y(n-1)
$$

so that $Y(6)=6!34560=2488329$. We also have that-

$$
\mathrm{Y}(\mathrm{n})=\prod_{k=1}^{n} k!=1!^{*} 2!^{*} 3!^{*} \ldots{ }^{*}(\mathrm{n}-1)!^{*} \mathrm{n}!
$$

This form for expressing $Y(N)$ is much simpler since it requires no exponents other than one. With this last form we can construct the following interesting pattern-
$6!5!4!3!2!1!=2488329$
$5!4!3!2!1!=34560$
$4!3!2!1!=288$
$3!2!1!=12$
$2!1!=2$
$1!=1$

The factorial form of $\mathrm{Y}(\mathrm{n})$ above at first glance looks completely different from the exponential form we started with. To further prove that they are identical we have constructed the following four column table-

n	$\prod_{k=1}^{n} k^{\wedge}(n+1-k)$	$\mathrm{Y}(\mathrm{n})$	$\prod_{k=1}^{n} k!$
1	$1^{\wedge} 1$	1	$1=1$
2	$1^{\wedge} 2 \times 2^{\wedge} 1=2$	2	$1 \times 2=2$
3	$1^{\wedge} 3 \times 2^{\wedge} 2 \times 3^{\wedge} 1=12$	12	$1 \times 2 \times 6=12$
4	$1^{\wedge} 4 \times 2^{\wedge} 3 \times 3^{\wedge} 2 \times 4^{\wedge} 1=288$	288	$1 \times 2 \times 6 \times 24=288$
5	$1^{\wedge} 5 \times 2^{\wedge} 4 \times 3^{\wedge} 3 \times 2^{\wedge} 2 \times 1^{\wedge} 1=34560$	34560	$1 \times 2 \times 6 \times 24 \times 120=34560$

A related number product function is-

$$
\mathrm{T}(\mathrm{n})=\prod_{k=1}^{n}(k!)^{\wedge} 2
$$

For $n=1,2,3,4,5$ it reads-

$$
\begin{aligned}
& T(1)=1 \\
& T(2)=4 \\
& T(3)=144 \\
& T(4)=82944 \\
& T(5)=1194393600
\end{aligned}
$$

From this we see at once that $\mathrm{T}(\mathrm{n})=\mathrm{Y}(\mathrm{n})^{\wedge} 2$.
As another related function we can also look at-

$$
\mathrm{R}(\mathrm{n})=\sum_{k=1}^{n} k!/ \prod_{k=1}^{n} k!
$$

The first few $R(n)$ look as follows-

$$
\begin{aligned}
& R(1)=1 \\
& R(2)=3 / 2 \\
& R(3)=2 / 3 \\
& R(4)=1 / 9 \\
& R(5)=17 / 3840
\end{aligned}
$$

This ratio point function goes to zero as n becomes infinite.

U.H.Kurzweg

January 1, 2023
Gainesville, Florida
Happy New Year

