EVALUATING THE EQUATION SQRT[(x+R)^2-N]=INTEGER

Several years ago we found that any semi-prime $\mathrm{N}=\mathrm{pq}$ has its prime components given by-

$$
[\mathrm{p}, \mathrm{q}]=(\mathrm{x}+\mathrm{R}) \mp \operatorname{sqrt}\left[(x+R)^{2}-N\right]
$$

, where the radical-

$$
F(x)=\operatorname{sqrt}\left[(x+R)^{\wedge} 2-N\right]=\operatorname{sqrt}\left(\left(x^{\wedge} 2+2 x R+\left(R^{\wedge} 2-N\right]\right.\right. \text { must be an integer. }
$$

Once $F(x)$ has been found the prime components become-

$$
p=x+R-F(x) \quad \text { and } \quad q=(k+R)+F(x)
$$

We wish in this note to examine the properties of the Diophantine Equation $F(x)=i n t$.

The first thing we notice is that the dominant term in the second square root is $\mathbf{2 x R}$ and not $x^{\wedge} \mathbf{2}$ or ($\mathbf{R}^{\wedge} \mathbf{2 - N}$). R is typically much larger than x . So we can set $x=a R$ with a guess for ' a ' in the range $0<a \ll 1$. A graph of $F(x)$ will give a clue as to which ' a ' to choose as a search starting point.

To find the exact values of x and $\mathrm{F}(\mathrm{x})$ we apply the following computer search procedure-

for x from aR to $\mathrm{aR}+\mathrm{c}$ do($\left(\left\{x, \operatorname{sqrt[}\left[(\mathrm{x}+\mathrm{R})^{\wedge} 2-\mathrm{N}\right)\right]\right\}$ od;

For smaller semi-primes we can set ' a ' to zero and run things for ' c ' trials.
Let us use this computer approach for several different semi-primes. We begin with the semi-prime-

$$
N=3431 \text { where } R=59
$$

Starting the search with ' a ' $=0$, we get the first three terms to read-

x	$F(x)$
0	$\operatorname{sqrt}(50)$
1	13
2	sqrt(290)

So we get an integer $F(x)=13$ at $x=1$. This means -

$$
\mathrm{p}=1+59-13=47 \text { and } \mathrm{q}=1+59+13=73
$$

Next take the six digit long semi-prime -

$$
N=455839 \quad \text { for which } R=676
$$

Using just five trials, starting with $x=0$, we get-
$x=4$ producing $F(x)=\operatorname{sqrt}\left[(4+676)^{\wedge} \mathbf{2}-N\right]=81$
So the prime components become-

$$
p=4+676-81=599 \text { and } q=4+676+81=761
$$

As a third case consider the seven digit long semi-prime-
$N=7828229$ where $R=2798$
Its $F(x)$ plot in the range $0<x<160$ has the parabolic like shape shown-

Our computer program, run over the range $x=0$ to $x=160$, shows that the integer solution is here $x=79$ with $F(x)=670$. We see this occurs along the $F(x)$ curve just slightly to the left of where $F(x)$ becomes asymptotic. This suggest one can carry out future searches with still larger Ns by looking at an x just slightly to the left of the asymptotic form of $F(x)$.

Let us demonstrate the procedure for the eleven digit long semi-prime-

$$
N=62641791371 \text { where } R=250284
$$

The $F(x)$ curve drawn over the range $0<x<40,000$ looks as follows-

So carrying out a computer search near $\mathrm{x}=18000$ produces the integer solution $[x, F(x)=[18366,97627]$. From it we have the prime factors-

$$
p=x+R-97627=171023 \quad \text { and } \quad q=x+R+97627=366277
$$

Taking the product of p and q returns the original semi-prime \mathbf{N}.

What is clear from the above examples is that the number of trials increases dramatically as \mathbf{N} gets larger if one starts the search at $\mathbf{x}=\mathbf{0}$. In that situation one should try a larger $x=a R s$ as a starting point and run things out to c. The starting point value of x is suggested by looking at the parabolic shaped $F(x)$ curve slightly to the left of its asymptote for the specified \mathbf{N} under consideration.

U.H.Kurzweg

November 16, 2023
Gainesville, Florida

