SOME LESS WELL KNOWN IDENTITIES INVOLVING N!

It is well known that the factorial is defined as-

$$
\mathrm{n}!=1 \cdot 2 \cdot 3 \cdot 4 \cdot \ldots \cdot \mathrm{n}=\int_{t=0}^{\infty} t^{n} \exp (-t) d t=\Gamma(\mathrm{n}+1)
$$

, where $\Gamma(n)$ is the continuous gamma function. We also have the identities-

$$
n!(n+1)=(n+1)!\quad \text { and } \quad n \Gamma(n)=\Gamma(n+1)
$$

Using this information, one can construct numerous other identities involving the factorial. Doing so will be the main topic of this article.

We begin with writing (2n)! as-

$$
(2 n)!=[1 \cdot 3 \cdot 5 \cdot \ldots \cdot(2 n-1)] \cdot\left[\left(2^{\wedge} n\right) \cdot n!\right]
$$

Next we notice that $\Gamma(1 / 2)=\operatorname{sqrt}(\pi), \Gamma(3 / 2)=(1 / 2) \operatorname{sqrt}(\pi)$, and $\Gamma(5 / 2)=(3 / 2)(1 / 2) \operatorname{sqrt}(\pi)$. These allow us to generalize to produce-

$$
[1 \cdot 3 \cdot 5 \cdot \ldots \cdot(2 n-1)]=\left(2^{\wedge} n\right) \Gamma(2 n+1) / \operatorname{sqrt}(\pi)
$$

Getting rid of the left hand side of this last equality, allows us to rewrite (2n)! as-

$$
(2 n)!=n!\left\{2^{\wedge}(2 n) \cdot \Gamma[(2 n+1) / 2] / \operatorname{sqrt}(\pi)\right\}
$$

This result was first obtained by Legendre and is known in the literature as Legendre's duplication formula. At $\mathbf{n}=5$, it reads-

$$
10!=5!2^{10} \Gamma(11 / 2) / \operatorname{sqrt}(\pi)=3628800
$$

We can double (2n)! by replacing \mathbf{n} by $2 n$. This produces-

$$
\left.\left.(4 n)!=n!2^{\wedge}(6 n)\{\Gamma[(4 n+1) / 2] \Gamma[(2 n+1) / 2]\} / \pi\right)\right\}
$$

Doubling the ns again produces-

$$
(8 n)!=n!2^{\wedge} 14 n\{\Gamma[(8 n+1) / 2] \Gamma[(4 n+1) / 2] \Gamma[(2 n+1) / 2]\} /[\pi \mathrm{sqrt}(\pi)]
$$

Also we have-

$$
(16 n)!=n!2^{\wedge} 30 n\{\Gamma[(16+1) / 2] \Gamma[(8 n+1) / 2] \Gamma[(4 n+1) / 2] \Gamma[(2 n+1) / 2]\} / \pi^{\wedge} 2
$$

So we have the generalization-

$$
\left[\left(2^{\wedge} \mathrm{k}\right) \mathrm{n}\right]!=\left\{\mathrm{n}!2^{\wedge}\left[2 \mathrm{n}\left(2^{\wedge} \mathrm{k}-1\right)\right] /\left(\operatorname{sqrt}(\pi)^{\wedge} \mathrm{k}\right\} \prod_{j=0}^{k-1} \Gamma\left[\frac{2 n(k-j)+1}{2}\right]\right.
$$

For $k=1$ this result reduces back to the Legendre duplication formula. This generalization allows one to easily express large n ! in terms of products of powers of primes.Take the case of $k=2$ and $n=2$. Here we get-

$$
8!=\left(2^{\wedge} 7\right)(3 \wedge 2) * 5 * 7=40320 \text { with the exponent vector } V=\left[\begin{array}{lll}
7 & 2 & 1
\end{array}\right]
$$

Note that this factorial and others have a similar prime product form in which the lowest primes have the largest exponents. Here is a demonstration of this fact via the following table-

Factorial	exponent vector, V
2! $=2$	[1000]
3! $=6$	[1100]
4! $=24$	[3100]
5! $=120$	[31110]
6! $=720$	[4210]
7! $=5040$	[42211]
8! $=40320$	[7211]
9! $=362880$	[7411]
10! $=3628800$	[8421]

Numbers of this type, where the powers of their prime vector V elements drop with increasing prime number such as $8>4>2>1>0$ for 10 !, are what we have termed earlier as super-composites. Such super-composites are recognized by having their number fraction $f=[\operatorname{sigma}(\mathrm{n})-\mathrm{n}-1] / \mathrm{n}>1$. The values of the number fraction are found to tower in value above their neighbors as shown in the following graph for f(8!)-

One can also use ever increasing n ! to show that $f(\infty)$ becomes unbounded but does so very slowly. Even for $f(100$!) we find the relatively small value $f=7.293771353 \ldots$. Remember that when \mathbf{n} is a prime, the value of f will always be zero.

We can quickly determine 11! by adding up the vectors [8421] and [00001].That is, 11! corresponds to the vector[84211]. So-

$$
11!=\left(2^{\wedge} 8\right)\left(3^{\wedge} 4\right)\left(5^{\wedge} 2\right)\left(7^{\wedge} 1\right)\left(11^{\wedge} 1\right)=39916800 \text { with } f(11!)=3.609814790 \ldots
$$

Another interesting relation involving n ! and not often seen in the literature is the fact that-

$$
1 \cdot 4 \cdot 9 \cdot 16 \cdot \ldots . n^{\wedge} 2=n!n!
$$

That is, the product of the squares of integers up to $n \wedge 2$ equals the product of $n!\cdot n!$ One can take this result further by noting that-

$$
1 \cdot 2^{\wedge} m \cdot 3^{\wedge} m \cdot 4^{\wedge} m=(n!)^{\wedge} m
$$

Thus we have that-

$$
1 \cdot 16 \cdot 81 \cdot 256=(4!)^{\wedge} 4=331726
$$

One can rewrite these equalities in the compact form-

$$
\prod_{j=1}^{n} j^{m}=(n!)^{\wedge} \boldsymbol{m}
$$

So, $\mathbf{1} \cdot \mathbf{8} \cdot \mathbf{2 7} \cdot \mathbf{6 4}=\mathbf{1 3 8 2 4}$ and $\mathbf{1} \cdot \mathbf{8} \cdot \mathbf{2 7} \cdot \mathbf{6 4} \cdot \mathbf{1 2 5} \cdot \mathbf{2 5 6}=(\mathbf{6}!)^{\wedge} \mathbf{3}=\mathbf{3 7 3 2 4 8 0 0 0}$.
Finally we can look at the sum of some series involving n ! Lets begin with the sum-

$$
G(n)=1!+2!+3!+4!+(n-1)!+n!
$$

Here the sums go as $G(1)=1, G(2)=3, G(3)=9, G(4)=33$, and $G(5)=158$. Summing to n ! we get-

$$
\mathbf{G}(\mathbf{n})=\sum_{j=1}^{n} j!
$$

This is a very rapidly growing series as \mathbf{n} increases. Thus, for example,

$$
G(20)=25613274941118203
$$

Next we look at the numbers -

$$
\mathrm{N}=1+1+1 / 6+1 / 24+1 / 120+\ldots=\sum_{n=0}^{\infty} \frac{1}{n!}=\mathrm{e}=\mathbf{2 . 7 1 8 2 8 1 8 2 8 4 5 2 3 5} \ldots
$$

and-

$$
M=1+1+1 / 36+1 / 76+1 / 14400+\ldots=\sum_{n=0}^{\infty} \frac{1}{n!n!}=I_{0}(2)=2.279585302 \ldots
$$

, where $I_{0}(2)$ is the modified Bessel function of order zero at $x=2$. We also have

$$
\sum_{n=0}^{\infty} \frac{1}{n!n!n!}=2.1297025489833064181 \ldots
$$

and-

$$
\sum_{n=0}^{\infty} \frac{1}{n!n!n!n!}=2.0632746238463152314 \ldots
$$

Clearly as the number of n !s increase in the denominator of the sum, the series heads toward two.

U.H.Kurzweg

December 3, 2021
Gainesville, Florida

