DETERMINING WHETHER A NUMBER IS PRIME OR COMPOSITE

It is well known that an integer is a prime if its only divisors are one and N . It is a composite if it is also devisable by additional integers. Thus $\mathrm{N}=5720371$ is a prime while $N=368159$ is a composite. One of the easiest ways to distinguish between the two types of numbers is to carry out an evaluation of sigma(N)-1, where sigma(N) is the summation point function of number theory. We want here to derive a few other ways to distinguish primes from composite numbers.

We start by looking at the ratio-

$$
\sigma\left(p^{\wedge} 3\right) / \sigma\left(p^{2}\right)=\left(1+p^{2}+p^{\wedge} 2+p^{\wedge} 3\right) /\left(1+p+p^{\wedge} 2\right)=1+p^{\wedge} 3 /\left(\sigma\left(p^{2}\right)\right.
$$

, where p are primes. Multiplying this expression by $\sigma\left(\mathrm{p}^{\wedge} 2\right)$ produces the result-

$$
0=\sigma\left(p^{3}\right)-\sigma\left(p^{2}\right)-p^{\wedge} 3
$$

If one now replaces p by any positive integer n, we get the related point function-

$$
\mathrm{H}=\sigma\left(n^{3}\right)-\sigma\left(n^{2}\right)-\mathrm{n}^{\wedge} 3
$$

It has zero value only if n is a prime but not otherwise. Hence we have a new criterion for a number being prime, namely that H vanishes. Here is a short table confirming when n is a prime-

n	H	N	H
1	---	11	0
2	0	12	2949
3	0	13	0
4	32	14	2857
5	0	15	2462
6	293	16	3584
7	0	17	0
8	384	18	9716
9	243	19	0
10	1123	20	10851

The primes and the corresponding H are marked in red. Let us try the prime criterion for a couple of large numbers. First take-

$$
n=2^{\wedge} 32+1=4294967297
$$

Here we get in a split second that $\mathrm{H}=123805827909698676164362246$. So the number is composite. Next take -
n=6209613847

Here we get $\mathrm{H}=0$ so the number is a prime.
Another way to detect whether a number is prime or composite is to start with the numberfraction for powers of primes. This function is defined as-

$$
\mathrm{f}\left(\mathrm{p}^{\wedge} \mathrm{n}\right)=\left(\sigma\left(p^{n}\right)-p^{n}-1\right) / p^{\wedge} n
$$

Next take the ratio -

$$
f\left(p^{\wedge} 3\right) / f\left(p^{\wedge} 2\right)=(p+1) / p
$$

This can be rewritten as -

$$
1=1 / p f\left(p^{\wedge} 2\right)
$$

So that the right hand side for primes will be one. Relaxing the $\mathrm{n}=\mathrm{p}$ condition allows us to re-write things as-

$$
F=1 /\left(n f\left(n^{\wedge} 2\right)\right)
$$

, with $F=1$ occurring when $n=p$ and F less than unity for composite numbers. Here $\mathrm{F}]=1$ meaning $\mathrm{p}=41$ is a prime.

Besides the simple existing criterion for primeness being sigma $\sigma(\mathrm{N})-1=\mathrm{N}$, we have found two other rules which may be applied to any positive integer to determine whether N is a prime or composite, They yield primes if-

$$
H=\operatorname{sigma}\left(n^{\wedge} 3\right)-\operatorname{sigma}\left(n^{\wedge} 2\right)-n^{\wedge} 3=0
$$

and/or

$$
\mathrm{F}=1 /\left[\mathrm{nf}\left(\mathrm{n}^{\wedge} 2\right)\right]=1
$$

U. H. Kurzweg

April 9, 2024
Gainesville, Florida

