FOUR BASIC LAWS OF TRIGONOMETRY

I is well known that any triangle (right or not) obeys the four laws of Sin, Cos,Tan and Mollweide. We give here a quick derivation of these formulas. Our starting point is a oblique triangle of side lengths a, b, and c and opposite angles A, B, and C measured in degrees. A red bisector of length h coming from vertex A is also added as indicated in the following picture-

From the figure one has at once that-

$$
b \sin (C)=c \sin (B)=h
$$

From this folows the Law of Sines-

$$
\frac{a}{\sin (A)}=\frac{b}{\sin (B)}=\frac{c}{\sin (C)}
$$

Next we look at $\cos (C)=e / b$ with $e+f=a, h^{\wedge} 2=b^{\wedge} 2-e^{\wedge} 2=c^{\wedge} 2-f^{\wedge} 2$.
Eliminating e,f, and h , we have the Law of Cosines-

$$
c^{2}=a^{2}+b^{2}-2 a b \cos (C)
$$

To get the forms for the remainng, less used trig formulas, we start with the first two terms in the Law of Sines to get-

$$
\mathrm{a} / \sin (\mathrm{A})=\mathrm{b} / \sin (\mathrm{B})=\mathrm{k}
$$

So-

$$
(\mathrm{a}-\mathrm{b}) /(\mathrm{a}+\mathrm{b})=[\sin (\mathrm{A})-\sin (\mathrm{B})] /[\sin (\mathrm{A})+\sin (\mathrm{B})]=\tan [(\mathrm{A}-\mathrm{B}) / 2] / \tan [(\mathrm{A}+\mathrm{B}) / 2]
$$

To get this result we have set $\mathrm{A}=\mathrm{U}+\mathrm{V}$ and $\mathrm{B}=\mathrm{V}-\mathrm{U}$. The resultant calculation yields the Tangent Formula-

$$
\frac{(\boldsymbol{a}-\boldsymbol{b})}{(\boldsymbol{a}+\boldsymbol{b})}=\frac{\tan \left[\frac{(A-B)}{2}\right]}{\tan \left[\frac{[A+B)}{2}\right]}
$$

Finally we consider the derivation of the Mollweide Formula starting with-

$$
\frac{a+b}{c}=\frac{\sin (A)+\sin (B)}{\sin (C)}
$$

, since the constant k cancels out. Again letting $A=U+V$ and $B=V-U$ we get -

$$
\frac{a+b}{c}=\frac{2 \sin (V) \cos (U)}{\sin (C)}=\frac{2 \sin [(A+B) / 2] \cos [(A-B) / 2]}{\sin (C)}
$$

One last expansion, using $\mathrm{A}+\mathrm{B}+\mathrm{C}=\pi$, produces the Mollweide result-

$$
\frac{a+b}{c}=\frac{\cos \left[\frac{A-B}{2}\right]}{\sin \left(\frac{C}{2}\right)}
$$

It is interesting that this last trigonometric formula contains the length of all sides of the triangle plus its three vertex angles.

Let us apply the above four formulas to a particular triangle of sides $a=2$, $b=3$ and a vertex angle between these two sides given as $C=120$ deg.. From the Law of Cosines this says-

$$
\mathrm{c}=\mathrm{sqrt}[4+9-2(6) \cos (120)]=\operatorname{sqrt}(19)=4.35889 \ldots
$$

Next the Law of Sines yields-

$$
\mathrm{A}=\arcsin [2 * \sin (120) / \mathrm{sqrt}(19)]=23.413224
$$

and

$$
\mathrm{B}=\arcsin [3 \sin (120) / \mathrm{sqrt}(19)]=36.586775
$$

As expected the three angles A, B, and C add up to 180 deg. We now have found all side-lengths and vertex angles. A scaled picture of the triangle follows with vertexes at $[0,0],[2,0]$, and $[\operatorname{sqrt}(19) \cos (\mathrm{B}), 3 \sin (60)]$ -

Note that the Mollwiede Formula is also satisfied as indicted-

$$
(2+3) / \text { sqrt(19) }=1.147078=\cos (6.586773) / 0.866025
$$

So is the Tangent Law-
$(2-3) / 5=\tan [(\mathrm{A}-\mathrm{B}) / 2] / \tan [(\mathrm{A}+\mathrm{B}) / 2]=-0.11547 / 0.57733=-0.2000 \ldots$.

U.H.Kurzweg

December 27, 2021
Gainesville, Florida

