## FUNCTION APPROXIMATION USING INTEGRALS CONTAINING EVEN LEGENDRE POLYNOMIALS

## About fifteen years ago ( https://mae.ufl.edu/~uhk/EVAL-ARCTAN.pdf ) we

 came up with a new method for approximating the arctan function using Legendre polynomials. The method now referred to as the KTL technique was later extended by us to all trigonometric functions ( https://mae.ufl.edu/~uhk/KTL-METHOD.pdf ) and should be applicable for approximating many other slowly varying functions provided the Legendre polynomials used in the technique vary rapidly and have even symmetry in $[-1,1]$. It is our purpose here to generalize the KTL method making it applicable for any integral of the form-$$
\mathrm{J}(\mathrm{n}, \mathrm{a})=\int_{x=0}^{1} P[2 n, x) f(a x) d x=\text { const. }\{h(a) N(n, a)-g(a) M(n, a)\}
$$

, with $g(a)$ and $h(a)$ related back to $f(a x)$. The $N(n, a)$ and $M(n, a)$ are polynomials in ' $a$ ' once the value of $n$ used in the Legendre Polynomial is specified. They increase in size as $n$ gets larger. The polynomials N and M are easiest to obtain via the MAPLE computer operation -

$$
\text { collect(J(n,a),\{h(a),g(a)\}) }
$$

Here $P[2 n, x]$ represents the rapidly oscillating even Legendre Polynomials with $n$ zeros in $[0,1]$. The essence of the KTL method is that the integral $J(n, a)$ approaches zero value as $n$ goes to infinity. So we have the KTL approximation-

$$
g(a) / h(a) \approx N(n, a) / M(n, a)
$$

, with $n$ chosen beforehand and typically set at $n=4$ or above. We first came up with this approximation when playing around with the even Legendre Polynomial $P(2, x)=\left(3 x^{\wedge} 2-1\right) / 2$ and $f(1, x),=1 /\left(1+x^{\wedge} 2\right)$ back in 2009. This produced -

$$
\mathrm{J}(1,1)=\int_{x=0}^{1} \frac{P(2, x)}{\left(1+x^{2}\right) d x}=(3-\pi) / 2=0.07796
$$

On setting this value to zero, one obtains the $\pi$ approximation of 3 . This result suggested to me to let n become larger in order to improve the approximation for $\pi$.

Indeed, going to $2 \mathrm{n}=10$ produces-

$$
J(5,1)=(269852 / 315)-\pi(4363 / 16)=0.0000309
$$

It leads to the improved approximation-

$$
\pi \approx 4317632 / 1374345=3.141592 \ldots
$$

good to six places. Clearly the approximation improves rapidly with increasing $n$. Note here that n must be even to get the $\pi$ approximation. For odd n one gets a poorer approximation for $\ln (2)$. Also the replacement of the Legendre Polynomials by the Chebyshev Polynomials in the method also works but yields a poorer approximation for the same $n$.

To generalize things we replace $f(a x)=1 /\left(a^{\wedge} 2+x^{\wedge} 2\right)$ as used in the arctan approximation and $f(a x)=\cos (a x)$ as used for the $\tan (a)$ approximation by any other symmetric functions of $f(a x)$ having no poles in $[0,1]$.

We have the more general starting formula-

$$
\mathrm{J}(\mathrm{n}, \mathrm{a})=\int_{x=0}^{1} P(2 n, x) f(a x) d x
$$

, where $P(2 n, x)$ is the $2 n$th Legendre Polynomial and $f(a x)$ is any function with an even symmetry in $[-1,1]$ and which varies only slightly over the range $[0,1]$. One can use one of the following larger 2 n Legendre Polynomials in the present analysis-

$$
\begin{gathered}
P_{0}=1 \\
P_{2}=-\frac{1}{2}+\frac{3}{2} x^{2} \\
P_{4}=\frac{3}{8}-\frac{15}{4} x^{2}+\frac{35}{8} x^{4} \\
P_{6}=-\frac{5}{16}+\frac{105}{16} x^{2}-\frac{315}{16} x^{4}+\frac{231}{16} x^{6} \\
P_{8}=\frac{35}{128}-\frac{315}{32} x^{2}+\frac{3465}{64} x^{4}-\frac{3003}{32} x^{6}+\frac{6435}{128} x^{8} \\
P_{10}=-\frac{63}{256}+\frac{3465}{256} x^{2}-\frac{15015}{128} x^{4}+\frac{45045}{128} x^{6}-\frac{109395}{256} x^{8}+\frac{46189}{256} x^{10} \\
P_{12}=\frac{231}{1024}-\frac{9009}{512} x^{2}+\frac{225225}{1024} x^{4}-\frac{255255}{256} x^{6}+\frac{2078505}{1024} x^{8}-\frac{969969}{512} x^{10}+\frac{676039}{1024} x^{12}
\end{gathered}
$$

The larger n is taken the smaller the integral $\mathrm{J}(\mathrm{n}, \mathrm{a})$ will become and the better the approximation representing $g(a) / h(a)$ becomes. Setting $J(n, a)$ to zero then gives us the generalized KTL approximation-

$$
g(a) / h(a)=N(n, a) / M(n, a)
$$

for different functions $f(a x)$. Here is a brief list of many functions $g(a) / h(a)$ which can be approximated by the indicated symmetric $f(a x)$ -

| $f(a x)$ | $g(a) / h(a)$ |
| :--- | :--- |
| $1 /\left(a^{\wedge} 2+x^{\wedge} 2\right)$ | $(1 / a) \arctan (1 / a)$ |
| $\cos (a x)$ | $\tan (a)$ |
| $\exp -(a x)^{\wedge} 2$ | $\exp (a) \operatorname{erf}(\operatorname{sqrt}(a))$ |
| $1 /\left(1+(a x)^{\wedge} 2\right)$ | $\arctan (\operatorname{sqrt}(a))$ |
| $\cosh (a x)$ | $\tanh (a)$ |

Let us demonstrate in more detail the approximation method when using $\mathrm{p}(\mathrm{ax})=\cosh (\mathrm{ax})$. We start, after choosing $\mathrm{n}=2$, with the integral-

$$
\mathrm{J}(2, \mathrm{a})=\int_{x=0}^{1} P(4, x) \cosh (\mathrm{ax}) d x
$$

It evaluates to-

$$
\sinh (a)\left[a^{\wedge} 4+45 a^{\wedge} 2+105\right]-\cosh (a)\left[10 a^{\wedge} 3+105 a\right]
$$

after setting $J(2, a)$ to zero. The final result is -

$$
\tanh (\mathrm{a}) \approx\left(10 a^{\wedge} 3+105 a\right) /\left(a^{\wedge} 4+45 a^{\wedge} 2+105\right)
$$

This result is surprisingly close to the exact value. At $\mathrm{a}=1$ the difference between the exact value of $\tanh (1)$ and the approximation $115 / 151=0.761589$ is only about 0.00001 . It will become even closer if $n$ is increased from 2 or ' $a$ ' is decreased to less than one. Notice that this approximation for $\tanh (a)$ is all there is needed to get approximations for other hyperbolic functions. We have the identities-

$$
\sinh (x)=\tanh (x) / \operatorname{sqrt}\left(1-\tanh ^{2}(x)\right) \text { and } \cosh (x)=1 / \operatorname{sqrt}\left(1-\tanh ^{2}(x)\right)
$$

So using the above tanh approximation we get -

$$
\sinh (1) \approx \frac{115}{\operatorname{sqrt}\left(151^{2}-115^{2}\right)}=1.17518 \quad \cosh (1) \approx \frac{1}{\operatorname{sqrt}\left(151^{2}-115^{2}\right)}=1.54306
$$

These results are good to at least three decimal places.
We have shown in the above discussion that the KTL approximation method can be extended to multiple other functions $g(a)$ and $h(a)$ not already used earlier to obtain our arctan and trigonometric approximations. The accuracy of the method increases with the use of larger even Legendre Polynomials appearing as a product with an even function $\mathrm{p}(\mathrm{ax})$ in an integral extending over the finite range [0,1].

## U.H.Kurzweg

January 30, 2024
Gainesville, Florida

