
        FUNCTION APPROXIMATION USING INTEGRALS CONTAINING     

                            EVEN  LEGENDRE POLYNOMIALS 

 

About fifteen years ago ( https://mae.ufl.edu/~uhk/EVAL-ARCTAN.pdf )    we 
came up with a new method for approximating the arctan function using 
Legendre polynomials. The method now referred to as the KTL technique was 
later extended by  us to all trigonometric functions (  
https://mae.ufl.edu/~uhk/KTL-METHOD.pdf )   and should be applicable  for 
approximating many other slowly varying functions provided the Legendre 
polynomials used in the technique vary  rapidly   and have even symmetry in  

[-1,1]. It is our purpose here to generalize the KTL method making it applicable for 
any integral of the form- 

               J(n,a)=   ∫ 𝑃[2𝑛, 𝑥)𝑓(𝑎𝑥)𝑑𝑥 = 𝑐𝑜𝑛𝑠𝑡. {ℎ(𝑎)𝑁(𝑛, 𝑎) − 𝑔(𝑎)𝑀(𝑛, 𝑎)
ଵ

௫ୀ଴
} 

, with g(a) and h(a) related back to f(ax).The  N(n,a) and M(n,a) are polynomials in 
‘a’ once the value of n used in the Legendre Polynomial is specified. They  
increase in size as n gets larger. The polynomials N and M are easiest to obtain via 
the MAPLE computer operation - 

                               collect(J(n,a),{h(a),g(a)}) 

 Here P[2n,x] represents the rapidly oscillating even Legendre Polynomials with n 
zeros in [0,1] .  The essence of the KTL method is that the integral J(n,a) 
approaches zero value as n goes to infinity. So we have the KTL approximation- 

                               g(a)/h(a) ≈ N(n,a)/M(n,a)        

, with n chosen beforehand and typically set at n=4 or above. We first came up 
with this  approximation when playing around with the even Legendre Polynomial 
P(2,x) =(3x^2-1)/2  and  f(1,x), =1/(1+x^2) back in 2009. This produced – 

             J(1,1)=∫
௉(ଶ,௫)

(ଵା௫మ)ௗ௫
= (3 − 𝜋)/2

ଵ

௫ୀ଴
=0.07796 

On setting this value to zero, one obtains the π approximation of 3. This result 
suggested to me to let n become larger in order to improve the approximation for 
π. 



Indeed, going to 2n=10 produces- 

           J(5,1)=(269852 /315)-π(4363/16)=0.0000309 

It leads to the improved approximation- 

                π≈ 4317632/1374345=3.141592… 

good to six places. Clearly the approximation improves rapidly with increasing n. 
Note here that n must be even to get the π approximation. For odd n one gets a 
poorer approximation for ln(2) . Also the replacement of the Legendre 
Polynomials by the Chebyshev Polynomials in the method also works but yields a 
poorer approximation for the same n.     

To generalize things we replace f(ax)=1/(a^2+x^2) as used in the arctan 
approximation and f(ax)=cos(ax) as  used  for the tan(a) approximation  by any 
other symmetric functions of f(ax) having no poles in [0,1].  

We have the more general starting formula- 

                       J(n,a)=∫ 𝑃(2𝑛, 𝑥)𝑓(𝑎𝑥)𝑑𝑥
ଵ

௫ୀ଴
 

, where  P(2n,x) is the 2nth Legendre Polynomial  and f(ax) is any function with an 
even symmetry  in [-1,1] and which varies only slightly over the range  [0,1].  One 
can use one of the following larger 2n Legendre Polynomials in the present 
analysis-  



     

The larger n is taken the smaller the integral J(n,a) will become and the better the 
approximation representing g(a)/h(a) becomes. Setting J(n,a) to zero then gives us 
the generalized KTL approximation- 

                                       g(a)/h(a)=N(n,a)/M(n,a) 

 for different  functions f(ax). Here is a brief list of many functions g(a)/h(a) which 
can be approximated by  the indicated symmetric f(ax) - 

     

f(ax) g(a)/h(a) 

1/(a^2+x^2) (1/a)arctan(1/a) 

cos(ax) tan(a) 

exp-(ax)^2 exp(a) erf(sqrt(a)) 

1/(1+(ax)^2) arctan(sqrt(a)) 

cosh(ax) tanh(a) 



 

          

Let us demonstrate in more detail the approximation method when using  
p(ax)=cosh(ax). We start, after choosing n=2, with the integral- 

                        J(2,a)=∫ 𝑃(
ଵ

௫ୀ଴
4, 𝑥)cosh (𝑎𝑥)𝑑𝑥 

It evaluates to- 

           sinh(a) [a^4+45a^2+105]-cosh(a) [10a^3+105a] 

after setting J(2,a) to zero. The final result is – 

                    tanh(a)≈(10a^3+105a)/(a^4+45a^2+105) 

This result is surprisingly close to the exact value. At a=1 the difference between 
the exact value of tanh(1) and the approximation 115/151=0.761589  is only 
about 0.00001. It will become even closer if n is increased from 2 or ‘a’ is 
decreased to less than one. Notice that this approximation for tanh(a) is all there 
is needed to get approximations for other hyperbolic functions. We have the 
identities- 

            sinh(x)=tanh(x)/sqrt(1-tanh2(x))   and   cosh(x)=1/sqrt(1-tanh2(x)) 

So using the above tanh approximation we get - 

  sinh(1)≈ ଵଵହ

௦௤௥௧(ଵହଵమିଵଵହమ)
= 1.17518     cosh(1) ≈

ଵ

௦௤௥௧(ଵହଵమିଵଵହమ)
= 1.54306 

 These results are good to at least three decimal places. 

We have shown in the above discussion that the KTL approximation method can 
be extended to multiple other functions  g(a) and h(a) not already used earlier to 
obtain our arctan and trigonometric approximations. The accuracy of the method 
increases with the use of larger even Legendre Polynomials appearing as a 
product with an even function p(ax) in an integral extending over the finite range 
[0,1]. 
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