A GEOMETRIC WAY TO FACTOR LARGE
 SEMI-PRIMES

It has been of consideravble interest in the last few decades to find methods which can quickly factor semi-primes $\mathbf{N}=$ pq. Here \mathbf{p} and q are the contained primes. A new way to look at such numbers is to begin by taking the sigma function of both sides of the semi-prime definition. We have the following-

$$
\sigma(\mathbf{N})=\sigma(p q)=\sigma(p) * \sigma(q)=\sigma(p) * \sigma(\mathbf{N} / \mathbf{p})
$$

, where $\sigma(\mathbf{N})$ is the sigma function of semi-prime \mathbf{N}. The sigma-function represents the sum of all divisors of \mathbf{N} and hence equals $1+p+q+N$. Substituting this expansion into the above equality produces-

$$
\sigma(N)=(1+p)(1+N / p)
$$

This result maybe writen as-

$$
\mathbf{H}(\mathbf{x})=\frac{\sigma(N)}{1+x}-\frac{N+x}{x}
$$

, where $x=[p, q]$ and $H(x)$ vanishes only for those $x s$ which are the prime factors. $H(x)$ will generally have a parabolic shape peaking near $\operatorname{sqrt}(\mathbf{N})$. This new formula for factoring semi-primes may also be writen as-

$$
\mathbf{H}(\mathbf{x})=\frac{1+N+2\{\operatorname{sqrt}(N)+n\}}{1+x}-\frac{N+x}{x}
$$

Here $\operatorname{sqrt}(\mathbf{N})$ is the nearest integer to the square root of \mathbf{N} and $\mathrm{n}=\mathbf{0 , 1 , 2 , 3}$, etc is varied until $H(x)$ hits zero at $x=p$ and $x=q$. This second form for $H(x)$ works for all semi-primes $\mathbf{N}=\mathbf{p q}$ but will take longer than the $\sigma(\mathbf{N})$ route when this function is available on one's PC. Typically, as long as \mathbf{N} has less than about

40 digit length, the first of the two forms for $\mathbf{H}(\mathbf{x})$ is prefered since the number of trials can become huge for large Ns.

Let us demonstrate the solution approach for a very simple example involving the semi-prime -

$$
\mathrm{N}=77 \text { with } \sigma(77)=96
$$

Plugging these values into the first $\mathbf{H}(\mathrm{x})$ equation above produces the folowing geometric curve-

We see that $H(x)$ crosses the x axis at the primes $x=7$ and $x=11$. The $H(x)$ curve reaches its maximum near $\operatorname{sqrt}(77) \approx 9$. The second $H(x)$ equation above will give the same result when n is set to zero. It will however take longer than the sigma route when this value is available on one's computer. On setting $\mathbf{H}(\mathbf{x})=\mathbf{0}$, we find the two prime roots given by the quadratic-

$$
x^{\wedge} 2-18 x+77=0
$$

This means $p=7$ and $q=11$. The difference between q and p can be read off of the graph as 4 units.

Consider next a larger semi-prime $\mathbf{N}=\mathbf{1 2 0 5 0 2 3}$ with $\boldsymbol{\sigma}(\mathbf{N})=\mathbf{1 2 0 7 3 6 0}$. Here we have-

$$
H(x)=\frac{1207360}{1+x}-\frac{1205023+x}{x}
$$

A plot of this equation follows-

Note the values p and q as the $H(x)$ curve crosses the x axis. The difference between the primes is the even number $q-p=798$. The peak of the curve lies near $\operatorname{sqrt(N)} \approx 1098$.

As a final semi-prime to factor by the present geometrical method, we choose the eight digit long number-

$$
\mathrm{N}=67237033 \text { where } \quad \operatorname{sigma}(\mathrm{N})=67253760
$$

Here-

$$
\mathrm{H}(\mathrm{x})=\frac{67253760}{1+x}-\frac{67237033+x}{x}
$$

It plots as -

$H(x)$ is seen to have a parabolic like shape with a max near $\operatorname{sqrt}(\mathbf{N}) \approx 8200$. The average value of p and q is $(p+q) / 2=8363$. So not far removed from 8200 . You will notice that when N gets large the value of $\sigma(N)$ lies just slightly above N. The reason for this is that the definition $\sigma(\mathbf{N})=\mathbf{1}+\mathbf{p}+\mathbf{q}+\mathbf{N}$ has $1+\mathbf{p}+\mathbf{q} \ll \mathbf{N}$ for large N .

The present procedure can be taken to larger Ns including the hundred digit long semi-primes ncountered in pubic key cryptography. It does however require knowledge of $\sigma(\mathbf{N})$ or its equivalent form-

$$
\sigma(N)=1+N+2\{\text { sqrt(N) } \mathbf{N})+\mathrm{n}\}
$$

, where $\operatorname{sqrt}(\mathbf{N})$ represents the nearest integer approximation to the root of \mathbf{N} and \boldsymbol{n} is appropriately chosen to make p and q odd integers and not fractions.

U.H.Kurzweg

December 3, 2022
Gainesville, Florida

