LATEST ON FACTORING LARGE SEMI-PRIMES

INTRODUCTION:

One of the incompletely solved problems in number theory is to find a way to quickly factor large semi-primes N=pq into their prime components. Numerous methods have been proposed but none have succeeded in factoring large one-hundred digit long values. We want here to introduce a new approach for factoring semi-primes based on the prime difference 2a=q-p and the departure from the mean $2\Delta=(p+q) - 2R$.

CONSTRUCTING THE $f(\Delta, a)$ FUNCTION:

We begin by sketching the various components N,p,q,a, Δ involved in the new factoring approach. Here is the picture-

The mean value of (p + q)/2 equals $R+\Delta$, with R being the next integer above sqrt(N). Also-

$$p=(R+\Delta)-a$$
 and $q=(R+\Delta)+a$

Taking the product of p and q , we get the new governing equation for factoring any semi-prime N=pq as-

This is the important new equation relating Δ to 'a' and hence is the starting point for finding the factors p and q for any semi-prime. Note that the root of both sides of this equation must be equal to <u>the same integer</u>. Thus it must also be true that-

$$sqrt(N+a^2) = R+\Delta \equiv integer n$$

EVALUATION OF Δ AND a FOR SPECIFIC CASES:

To find p and q we start with the simple one line computer search program-

for Δ from 0 to b do ({ Δ , sqrt(-N+(R+ Δ)^2)}) od;

, where b is chosen to be large enough to include the integer solution Δ . Running the program for a given N and hence also a given R, we get the integer values for both Δ and 'a' from which follow p and q.

Let us demonstrate this factoring for some specific cases starting with the simple semi-prime N=77 for which R=9. Here we carry out the search-

for Δ from 0 to 4 do ({ Δ , sqrt(-77+(9+ Δ)²)})od;

After just one trial this produces Δ =0 and a=2. Thus we have p=9-2=7 and q=9+2=11.

Next we look at N=11303, where R=107. Here our search program produces Δ =1 and a=19. So we have the factors-

p=107+1-19=89 and q=107+1+19=127

For a third example consider the semi-prime N=455839 which has R=676. Here we find after four trials that Δ =4 and a=81. So the prime factors become-

p=(676+4)-81=599 and q=(676+4)+81=761

As a fourth specific example consider the seven digit long semi-prime-

N=7828229 where R=2798.

Doing a search for Δ we find Δ =79 and a=670. So we have -

p=(2798+79)-670=2207 and q=(2798+79)+670=3547

You will notice that the number of required search trials rapidly increases with increasing N so it would be a good idea for factoring larger semi-primes to start the search at some values of Δ greater than zero. To get some idea of what Δ to start the search with, one can look at the following table-

Integer Solutions of $a=sqrt[-N+(R+\Delta)^2]$					
N=77	R=9	a=2	∆=0	p=7	q=11
N=779	R=28	a=11	Δ=2	p=19	q=41
N=2701	R=52	a=18	Δ=3	p=37	q=73
N=11303	R=107	a=19	∆=1	p=89	q=127
N=455839	R=676	a=81	∆=4	p=599	q=761
N=7828229	R=2798	a=670	∆=79	p=2207	q=3547
N=28787233	R=5366	a=2076	∆=387	p=3677	q=7929
N=169331977	R=13013	a=6732	Δ=1638	p=7919	q=21383
N=3330853711	R=57714	a=12633	Δ=1366	p=46447	q=71713
Here R is the nearest integer above sqrt(N) and $p=R+\Delta$ -a and $q=R+\Delta+a$					

. All the numbers given there follow from -

 $a=sqrt([(R+\Delta)^2-N]$

, with R being the nearest integer above sqrt(N). Note that $\Delta{<\!\!\!<}a$, n \approx R, and R>> $\Delta.$

Let us see from the table what a good starting point for the Δ search might be. Take the seven digit semi-prime N=2430101 where R=1559. From the table we have that –

81<a< 670 and 4<Δ<79

So we could start the Δ search at about (4+79)/2 ~41. Doing this we get integer values at Δ =46 and a=382 after just five trials.

CONCLUDING REMARKS:

We have shown that large semi-primes can be evaluated using a new formula relating Δ to 'a'. Having found these values, one can then proceed to find-

 $p=(R+\Delta)-a$ and $q=(R+\Delta)+a$

To reduce the number of required trials for Δ , we can use an extended table to estimate a starting point for Δ greater than zero.

U.H.Kurzweg May 13, 2023 Gainesville, Florida