LATEST ON FACTORING LARGE SEMI-PRIMES

INTRODUCTION:

One of the incompletely solved problems in number theory is to find a way to quickly factor large semi-primes $N=p q$ into their prime components. Numerous methods have been proposed but none have succeeded in factoring large onehundred digit long values. We want here to introduce a new approach for factoring semi-primes based on the prime difference $2 a=q-p$ and the departure from the mean $2 \Delta=(p+q)-2 R$.

CONSTRUCTING THE f($\Delta, a)$ FUNCTION:

We begin by sketching the various components N, p, q, a, Δ involved in the new factoring approach. Here is the picture-

The mean value of $(p+q) / 2$ equals $R+\Delta$, with R being the next integer above sqrt(N). Also-

$$
p=(R+\Delta)-a \quad \text { and } \quad q=(R+\Delta)+a
$$

Taking the product of p and q, we get the new governing equation for factoring any semi-prime $\mathrm{N}=\mathrm{pq}$ as-

$$
a^{\wedge} 2+N=(R+\Delta)^{\wedge} 2
$$

This is the important new equation relating Δ to ' a ' and hence is the starting point for finding the factors p and q for any semi-prime. Note that the root of both sides of this equation must be equal to the same integer. Thus it must also be true that-

$$
\operatorname{sqrt}\left(N+a^{\wedge} 2\right)=R+\Delta \text { integer } n
$$

EVALUATION OF \triangle AND a FOR SPECIFIC CASES:

To find p and q we start with the simple one line computer search program-

for Δ from 0 to b do (\{ $\Delta, \operatorname{sqrt(-N+(R+\Delta)^{\wedge }2)\})~od;~}$

, where b is chosen to be large enough to include the integer solution Δ. Running the program for a given N and hence also a given R, we get the integer values for both Δ and ' a ' from which follow p and q.

Let us demonstrate this factoring for some specific cases starting with the simple semi-prime $\mathrm{N}=77$ for which $\mathrm{R}=9$. Here we carry out the search-

$$
\text { for } \Delta \text { from } 0 \text { to } 4 \text { do (\{ } \Delta \text {, sqrt(-77+(9+ }
$$

After just one trial this produces $\Delta=0$ and $\mathrm{a}=2$. Thus we have $\mathrm{p}=9-2=7$ and $q=9+2=11$.

Next we look at $N=11303$, where $R=107$. Here our search program produces $\Delta=1$ and $a=19$. So we have the factors-

$$
\mathrm{p}=107+1-19=89 \quad \text { and } \quad q=107+1+19=127
$$

For a third example consider the semi-prime $\mathrm{N}=455839$ which has $\mathrm{R}=676$. Here we find after four trials that $\Delta=4$ and $a=81$. So the prime factors become-

$$
p=(676+4)-81=599 \quad \text { and } \quad q=(676+4)+81=761
$$

As a fourth specific example consider the seven digit long semi-prime-

$$
\mathrm{N}=7828229 \text { where } \mathrm{R}=2798 \text {. }
$$

Doing a search for Δ we find $\Delta=79$ and $\mathrm{a}=670$. So we have -

$$
\mathrm{p}=(2798+79)-670=2207 \text { and } \mathrm{q}=(2798+79)+670=3547
$$

You will notice that the number of required search trials rapidly increases with increasing N so it would be a good idea for factoring larger semi-primes to start the search at some values of Δ greater than zero. To get some idea of what Δ to start the search with, one can look at the following table-

Integer Solutions of $\mathrm{a}=$ sqrt $\left[-\mathrm{N}+(\mathrm{R}+\Delta)^{\wedge} 2\right]$					
$N=77$	$\mathrm{R}=9$	$a=2$	$\Delta=0$	$\mathrm{p}=7$	$q=11$
$N=779$	$\mathrm{R}=28$	$\mathrm{a}=11$	$\Delta=2$	$\mathrm{p}=19$	$\mathrm{q}=41$
$N=2701$	$\mathrm{R}=52$	$a=18$	$\Delta=3$	$p=37$	$q=73$
$N=11303$	$\mathrm{R}=107$	$\mathrm{a}=19$	$\Delta=1$	$\mathrm{p}=89$	$\mathrm{q}=127$
$N=455839$	$\mathrm{R}=676$	$a=81$	$\Delta=4$	$\mathrm{p}=599$	$\mathrm{q}=761$
$N=7828229$	$\mathrm{R}=2798$	$a=670$	$\Delta=79$	$\mathrm{p}=2207$	$q=3547$
$N=28787233$	$\mathrm{R}=5366$	$a=2076$	$\Delta=387$	$p=3677$	$\mathrm{q}=7929$
$N=169331977$	$\mathrm{R}=13013$	$a=6732$	$\Delta=1638$	$\mathrm{p}=7919$	$\mathrm{q}=21383$
$N=3330853711$	$\mathrm{R}=57714$	$a=12633$	$\Delta=1366$	$\mathrm{p}=46447$	$\mathrm{q}=71713$
Here R is the nearest integer above sgrt (N) and$\mathrm{p}=\mathrm{R}+\Delta-\mathrm{a} \text { and } \mathrm{q}=\mathrm{R}+\Delta+\mathrm{a}$					

. All the numbers given there follow from -

$$
a=\operatorname{sqrt}\left(\left[(R+\Delta)^{\wedge} 2-N\right]\right.
$$

, with R being the nearest integer above sqrt(N). Note that $\Delta \ll a, n \approx R$, and $R \gg$ Δ.

Let us see from the table what a good starting point for the Δ search might be. Take the seven digit semi-prime $\mathrm{N}=2430101$ where $\mathrm{R}=1559$. From the table we have that -

So we could start the Δ search at about $(4+79) / 2 \sim 41$. Doing this we get integer values at $\Delta=46$ and $\mathrm{a}=382$ after jus t five trials.

CONCLUDING REMARKS:

We have shown that large semi-primes can be evaluated using a new formula relating Δ to ' a '. Having found these values, one can then proceed to find-

$$
p=(R+\Delta)-a \text { and } q=(R+\Delta)+a
$$

To reduce the number of required trials for Δ, we can use an extended table to estimate a starting point for Δ greater than zero.
U.H.Kurzweg

May 13, 2023
Gainesville, Florida

