THE FUNCTION $f(x)=1 /(1-e x p(x))$ AND A NEW TYPE OF PASCAL TRIANGLE

About seven years ago while playing around with the function $f(x)=1 /(1-\exp (x))$ (see https://www2/mae.ufl.edu/~uhk/MORE-PASCAL.pdf) we first noticed that this odd function with a singularity at $\mathrm{x}=0$ has the interesting property that-

$$
\begin{aligned}
& f^{\prime}=\exp (x) /(1-\exp (x))^{\wedge} 2[1] \\
& f^{\prime \prime}=\exp (x) /(1-\exp (x))^{\wedge} 3[\exp (x)+1] \\
& f^{\prime \prime \prime}=\exp (x) /(1-\exp (x))^{\wedge} 4[\exp (2 x)+4 \exp (x)+1] \\
& f^{\prime i v}=\exp (x) /(1-\exp (x))^{\wedge} 5[\exp (3 x)+11 \exp (2 x)+11 \exp (x)+1]
\end{aligned}
$$

By bringing the terms not inside the square bracket on the right hand side to the left, we have the new two parameter function-

$$
\mathrm{K}(\mathrm{n}, \mathrm{x})=\left(\frac{(1-\mathrm{e}(x))^{n+1}}{\exp (x)}\right) \frac{d^{n}}{d x^{n}}\left\{\frac{1}{1-\exp (x)}\right\}
$$

Here $K(n, x)$ is a finite length series in $\exp (a x)$, with $a=0,1,2, \ldots(n-1)$. After setting $\mathrm{x}=0$, one obtains the heretofore unknown Pascal-like triangle shown-

An inspection of this triangle shows the interesting property that the sum of the elements in any given row n add up to precisely n !. Thus row seven adds up to $7!=5040$. After some lengthy inspection we also find that any element in row n and column m designated by $D[n, m]$ is given by the formula-

$$
D[n, m]=(n+1-m) D[n-1, m-1]+m D[n-1, m]
$$

Thus $D[7,4]=4 D[6,3]+4 D[6,4]=4(302)+4(302)=2416$. Thus knowing the value of $D[n-1, m]$ in the $(n-1)$ row allows one to find any $D[n, m]$ in the nth row. The symmetry of the triangle is also noted to occur about column $\mathrm{m} / 2$. Similar to the values of $D[n, m]$ for a standard Pascal Triangle , the value of the elements $D[n, m]$ approach that of a Gaussian when fixed n gets large. Note that in terms of the function $K(n, x]$, we have that-

$$
\mathrm{n}!=\frac{\lim }{x \rightarrow 0} K(n, x)
$$

This can be considered as a derivative representation for the integral $n!=$ $\int_{0}^{\infty}\left(t^{n}\right) \exp (-t) d t$.

The first six functional forms of $K(n, x)$ for $n=1,2,3,4,5,6$ have the form-

$$
\begin{aligned}
& \mathrm{K}(1, \mathrm{x})=1 \\
& \mathrm{~K}(2, \mathrm{x})=\exp (\mathrm{x})+1 \\
& \mathrm{~K}(3, \mathrm{x})=\exp (2 \mathrm{x})+4 \exp (\mathrm{x})+1 \\
& \mathrm{~K}(4, \mathrm{x})-\exp (3 \mathrm{x})+11 \exp (2 \mathrm{x})+11 \exp (\mathrm{x})+1 \\
& \mathrm{~K}(5, \mathrm{x})=\exp (4 \mathrm{x})+26 \exp (3 \mathrm{x})+66 \exp (2 \mathrm{x})+26 \exp (\mathrm{x})+1 \\
& \mathrm{~K}(6, \mathrm{x})=\exp (5 \mathrm{x})+57 \exp (4 \mathrm{x})+302 \exp (3 \mathrm{x})+302 \exp (2 \mathrm{x})+57 \exp (\mathrm{x})+1
\end{aligned}
$$

The next $\mathrm{K}(\mathrm{n}, \mathrm{x})$ can be read directly off of the above modified Pascal Triangle. It reads-
$K(7, x)=\exp (6 x)+120 \exp (5 x)+1191 \exp (4 x)+2416 \exp (3 x)+1191 \exp (2 x)+120 \exp (x)+1$
We note that the number of terms in each of these expanded forms for $K(n, x)$ just equals n. Also the functional form of $K(n, x)$ for fixed n increases monotonically with increasing x at a rate greater than $\exp ((n-1) x)$.

An interesting side-light to $K(n, x)$ occurs when one replaces $\exp (x)$ by x and drops the term x in the denominator. This produces the identity-

$$
\mathrm{T}(\mathrm{n})=(1-\mathrm{x})^{\wedge}(\mathrm{n}+1) \frac{d^{\wedge} n}{d x^{\wedge} n}\{1 /(1-\mathrm{x})\}=\mathrm{n}!
$$

Thus $\mathrm{T}(10)=3628800=10$! . We also have the identity-

$$
\int_{0}^{\infty} x^{n} \exp (-x) d x=(1-\mathrm{x})^{\wedge}(\mathrm{n}+1) \frac{d^{\wedge} n}{d x^{\wedge} n}\{1 /(1-\mathrm{x})\}
$$

U.H.Kurzweg

February 24, 2020
Gainesville, Florida

