ORIGIN AND PROPERTIES OF LEGENDRE POLYNOMIALS

Back in 1782 the famous French mathematician A.M.Legendre came up with a new set of finite length polynomials now known as Legendre Polynomials. Their origin is the electric potential measured at point V at distance R from a single electric charge as shown in the following picture-

The potential at V from this point charge goes as const/R. Using the Law of Cosines and setting any common const to unity, the potential at V is-

$$
1 / \operatorname{sqrt}\left(1+t^{\wedge} 2-2 x t\right)
$$

, with the two new variables $t=a / R$ and $x=\cos (\theta)$. On carrying out a series expansion in t, one finds-

$$
\left.1 / \operatorname{sqrt}\left(1+t^{\wedge} 2-2 x t\right)=1+[x] t+\left[\left(3 x^{\wedge} 2-1\right) / 2\right] t^{\wedge} 2+\left[\left(5 x^{\wedge} 3-3 x\right) / 2\right] t^{\wedge} 3+O\left(t^{\wedge} 4\right)\right)
$$

The terms in the square brackets are the Legendre Polynomials. The first few read-

$$
\left.P(0, x)=1, P(1, x)=x, P(2, x)=\left(3 x^{\wedge} 2-1\right) / 2, \text { and } P(3, x)=5 x^{\wedge} 3-3 x\right) / 2
$$

Generalizing, we come up with the basic identity for Legendre Polynomials-

$$
1 / \operatorname{sqrt}\left(1+t^{\wedge} 2-2 x t\right)=\sum_{n=0}^{\infty} P(n, x) t^{\wedge} n
$$

Next we differentiate this last equality with respect to to get -
$(\mathrm{x}-\mathrm{t}) \sum_{n=0}^{\infty} P(n, x) t^{n}=\left(1+\mathrm{t}^{\wedge} 2-2 \mathrm{xt}\right) \sum_{n=0}^{\infty} n P(n, x) t^{\wedge}(n-1)$.
On expanding, this yields-
$\mathrm{x} \sum_{n=0}^{\infty} P(n, x) t^{n}-\sum_{n=0}^{\infty} P(n, x) t^{\wedge}(n+1)=$
$\sum_{n=0}^{\infty} n P(n, x) t^{\wedge}(n-1)+\sum_{n=0}^{\infty} n P(n, x) t^{n+1}-2 x \sum_{n=0}^{\infty} n P(n, x) t^{\wedge} n$
Converting the above five sums to the same powers $\mathrm{t}^{\wedge} \mathrm{n}$, these produce the Bonnet recurrence relation-

$$
(\mathrm{n}+1) \mathrm{P}(\mathrm{n}+1, \mathrm{x})=(2 \mathrm{n}+1) \mathrm{x} \mathrm{P}(\mathrm{n}, \mathrm{x})-\mathrm{nP}(\mathrm{n}-1, \mathrm{x})
$$

By setting $\mathrm{n}=2$, we find, for example, that -

$$
\mathrm{P}(3, \mathrm{x})=[5 \mathrm{xP}(2, \mathrm{x})-2 \mathrm{P}(1, \mathrm{x})] / 3=\left(5 \mathrm{x}^{\wedge} 3-3 \mathrm{x}\right) / 2
$$

Starting with $P(0, x)=1$ and $P(1, x)=x$ this recurrence relation can be used to quickly find all positice integer Legendre Polynomials. Here is a jpg for the first ten-

FIRST TEN LEGENDRE POLYNOMIALS USING BONNET'S RECURRENCE RELATION

$$
\begin{gathered}
P_{0}=1 \\
P_{1}=x \\
P_{2}=-\frac{1}{2}+\frac{3}{2} x^{2} \\
P_{3}=-\frac{3}{2} x+\frac{5}{2} x^{3} \\
P_{4}=\frac{3}{8}-\frac{15}{4} x^{2}+\frac{35}{8} x^{4} \\
P_{5}=\frac{15}{8} x-\frac{35}{4} x^{3}+\frac{63}{8} x^{5} \\
P_{6}=-\frac{5}{16}+\frac{105}{16} x^{2}-\frac{315}{16} x^{4}+\frac{231}{16} x^{6} \\
P_{7}=-\frac{35}{16} x+\frac{315}{16} x^{3}-\frac{693}{16} x^{5}+\frac{429}{16} x^{7} \\
P_{9}=\frac{315}{128}-\frac{315}{32} x^{2}+\frac{3465}{64} x^{4}-\frac{3003}{32} x^{6}+\frac{6435}{128} x^{8} \\
32 \\
P^{3}+\frac{9009}{64} x^{5}-\frac{6435}{32} x^{7}+\frac{12155}{128} x^{9}
\end{gathered}
$$

Note that these polynomials have finite length with the highest powers of x equal to n. They are either even or odd functions with n zeros in $-1<\mathrm{x}<+1$. One also has the integral values-

$$
\int_{x=-1}^{1} P(n, x) P(m, x) d x=[2 /(2 n+1)] \delta n m
$$

, where the delta represents the Kronecker delta. This orthogonality condition reduces to -

$$
\int_{x=-1}^{1} P(n, x) d x=0
$$

on setting $\mathrm{m}=0$. Both relations follow directly from the above list of Legendre Polynomials.
Another way to generate $\mathrm{P}(\mathrm{n}, \mathrm{x})$ is via the second order ODE-

$$
\left(1-x^{\wedge} 2\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0
$$

, where $\mathrm{y}=\mathrm{P}(\mathrm{n}, \mathrm{x})$. The simplest way to verify that this differential equation indeed satisfies the Legendre Polynomials is to assume it to be correct and then evaluate it starting with $\mathrm{n}=1$. Here is what one finds-
$\mathrm{n}=1$ produces $\left(1-\mathrm{x}^{\wedge} 2\right) 0-2 \mathrm{x}+2 \mathrm{x}=0$
$\mathrm{n}=2$ produces $\left(1-\mathrm{x}^{\wedge} 2\right) 3-2 \mathrm{x}(3 \mathrm{x})+3\left(3 \mathrm{x}^{\wedge} 2-1\right)=0$
$\mathrm{n}=3$ produces $\left(1-\mathrm{x}^{\wedge} 2\right) 15 \mathrm{x}-\mathrm{x}\left(15 \mathrm{x}^{\wedge} 2-3\right)+6\left(5 \mathrm{x}^{\wedge} 3-3 \mathrm{x}\right)=0$
So clearly the above differential equation has $\mathrm{y}=\mathrm{P}(\mathrm{n}, \mathrm{x})$ as one of its solutions.
A final alternate way to generate Legendre Polynomials is by the Rodrigues Formula-

$$
\mathrm{P}(\mathrm{n}, \mathrm{x})=\left[1 /\left(\mathrm{n}!2^{\wedge} \mathrm{n}\right)\right] \mathrm{nth} \text { derivative of }\left[\left(\mathrm{x}^{\wedge} 2-1\right)^{\wedge} \mathrm{n}\right]
$$

To prove its validity one again writes out the first few terms to verify that it indeed yields $P(n, x)$. We have for-

```
n=1 that (1/2)(2x)=x=P(1,x)
n=2 that (1/8)(12x^2-4)=(3\mp@subsup{x}{}{\wedge}2-1/2=P(2,x)
n=3 that (1/48)(d
```

There are an infinite number of definite integrals involving Legendre Polynomials. Among these are the following-

$$
\int_{x=0}^{1} \frac{P(n, x)}{a^{2}+x^{2}} d x \quad \int_{x=0}^{1} P(n, x) \sin (a x) d x \quad \text { and } \quad \int_{x=0}^{1} P(n, x) \cosh (a x) d x
$$

These are used as starting points in the KTL approximation method for finding highly accurate approximations for $\arctan (1 / a), \tan (a)$ and $\tanh (a)$, respectively.
U.H.Kurzweg

February 19, 2024
Gainesville, Florida

