SOLUTION OF A NON-LINEAR DIOPHANTINE EQUATION

In several earlier articles found on this web page we have shown that any semi-prime $\mathrm{N}=\mathrm{pq}$ can be decomposed into its components-

$$
p=(R+x)-y \text { and } y=(R+x)+y
$$

, with x and y given by a solution of the non-linear Diophantine equation-

$$
\left(N+y^{\wedge} 2\right)=(x+R)^{\wedge} 2
$$

,where R is he next integer above sqrt(N). Thus the integer solution $[x, y]$ in effect factorizes $\mathrm{N}=\mathrm{pq}$. We wish in this note to offer a general solution to the above Diophantine Equation.

We begin by noting that-

$$
(x+R)^{\wedge} 2-y^{\wedge} 2=N
$$

is just a standard hyperbola when the integer restrictions for x and y are relaxed. This hyperbola is centered at $[x, y]=[-R, 0]$ and has slope-
$d y / d x=(x+R) / y=(x+R) / s q r t\left(-N+(x+R)^{\wedge} 2\right)$
So we have an infinite slope at the slightly negative value of $-\mathrm{R}+\mathrm{sqrt}(\mathrm{N})$.
There will be just one point $[\mathrm{x}, \mathrm{y}]$ along this parabola in the first quadrant at which $[\mathrm{x}, \mathrm{y}]$ will equal integers. To find this point we use the one line computer program-
for x from b to c do($\left.\left(\mathrm{x}, \mathrm{sqrt}\left(-\mathrm{N}+(\mathrm{R}+\mathrm{x})^{\wedge} 2\right)\right\}\right)$ od;
, where b lies slightly below x and c just above it. To get some idea of what value b might have we have constructed the following table using a brute force approach starting with $\mathrm{b}=0$. It produces-

Integer Solutions of the Non-Linear Diophantine Equation$\left(N+y^{\wedge} 2\right)=(R+x)^{\wedge} 2$				
$\mathrm{N}=\mathrm{pq}$	R	$y=(q-p) / 2$	$x=(p+q) / 2-R$	$\mathrm{n}=\mathrm{R}+\mathrm{x}$
35	6	1	0	6
77	9	2	0	9
779	28	11	2	30
2701	52	18	3	55
11303	107	19	1	108
455839	676	81	4	680
7828229	2798	670	79	2877
28787233	5366	2076	387	5753
76357301	8739	1082	66	8805
169331977	13013	6732	1638	14651
3330853711	57714	12633	1366	59080
3574406403731	1890610	725225	134324	2024934
Here N is a semi-prime, R is the nearest integer above sqrt(N) and$p=R+x-y \text { and } q=R+x+y$				

There are a few obvious points to note in this table. It is that $N>R>y>x$ and that R and N are comparable in size. For the semi-prime $\mathrm{N}=7828229$, where $\mathrm{R}=2798$, we could choose $\mathrm{b}=75$ and $\mathrm{c}=83$. His produces-

Factoring $\mathrm{N}=7828229$ with $\mathrm{R}=2798$
for x from 75 to 83 do ($\left\{x\right.$, sqrt $\left.\left(-N+(x+R)^{\wedge} 2\right\}\right)$ od;

```
\(\{75,10 \sqrt{4259}\}\)
\(\{76, \sqrt{431647})\)
\(\{77,2 \sqrt{109349}\}\)
    \(\{78, \sqrt{443147}\}\)
    \(\{79,670\}<\) solution [ \(\mathrm{X}, \mathrm{y}\) ]
\(\{80, \sqrt{454655})\)
\(\{81,2 \sqrt{115103}\}\)
    \(\{82, \sqrt{466171})\)
    \(\{83,2 \sqrt{117983}\}\)
```

, with the desired integer solution $[x, y]=[79,670]$. This produces $p=2207$ and $q=3547$. The problem here is that $x=79$ was known from the above table and thus $[x, y]$ are known to begin
with. How could one estimate b by some other means? One way is to look at the hyperbola for this same N. Its curve looks as follows-

We have marked the $[x, y]$ solution by the blue circle. It lies slightly below where the tangent line merges with the parabola, suggesting one could try $b=75$ and run things through $c=85$. This produces the solution [79,670] in five trials instead of the 79 trials it would take by starting the search at $b=0$. To confirm that this approach works consider another semi-prime $\mathrm{N}=455839$ with $R=676$. Here we get the following hyperbolic graph together with its tangent line-

The graph suggests we start the $[x, y]$ search with $b=3$ and go to $c=5$. After just two trials we arrive at the Diophantine solution $[x, y]=[4,81]$. Thus $p=(676+4)-81=599$ and $q=(676+4)+81=761$. As a third semi-prime to factor, consider $\mathrm{N}=28787233$ with $\mathrm{R}=5366$. This produces the graph-

It suggests we use $b=350$ as a starting point expecting $[x, y]$ to occur below $c=400$. Running a search we find $[x, y]=[387,2076]$. So the prime components are $p=(5366+387)-2076=3677$ and $q=(5366+387)+2076=7829$.

We have shown how to factor any semi-prime $N=p q$ regardless of its size by choosing a value of $\mathrm{x}=\mathrm{b}$ in a computer search program, where b lies just below where a hyperbola and its tangent line meet. This Diophantine solution procedure is expected to work for an infinite number of additional cases requiring a relatively low number of computer trials.
U.H.Kurzweg

May 4, 2023
Gainesville, Florida

