PROPERTIES OF A NEW FACTORIZATION FORMULA

Recently while studying ways to accelerate the process of factoring large semiprimes we came up with a new formula -

$$
\mathrm{H}(\mathrm{x})=\frac{\sigma(N)}{1+x}-\frac{N+x}{x}
$$

whose solution for $H(x)=0$ produces the prime factors $x=[p, q]$ of the semi-prime $\mathrm{N}=\mathrm{pq}$. You will find its derivation at-

https://mae.ufl.edu/~uhk/ MORE-SEMI-PRIMES.pdf

We want in this article to discuss in more detail the properties of this formula.
Let us begin by noting that $\sigma(N)$ is the sigma function of number theory representing the sum of all divisors of the semi-prime $N=p q$. That is-

$$
\sigma(N)=1+p+q+N
$$

must be a positive even integer since p, q, and N are odd. The value of $H(0)$ goes to minus infinity as does $H(\infty)$. Working out the first derivative of $H(x)$, we have-

$$
d H(x) / d x=-\sigma(N) /(1+x)^{\wedge} 2+N / x^{\wedge} 2
$$

This has zero value at-

$$
\text { xbar }=\frac{\sqrt{N}}{\sqrt{\sigma(N)}-\sqrt{N}} \quad \text { with } \mathrm{H}(\text { xbar })>0
$$

From this information we know that the curve $\mathrm{H}(\mathrm{x})$ will have a parabolic like shape with $H(x)=0$ at $x=[p, q]$. Here is a generic graph of $H(x)-$

We can calculate the value $x=[p, q]$ by evaluating the re-written form of $H(x)=0$. It has the quadratic representation-

$$
x^{\wedge} 2+[1+N-\sigma(N)] x+N=0
$$

which has the two integer solution $x=[p, q]$. One is fortunate in that most advanced computer math programs yield $\sigma(\mathrm{N})$ for Ns up to about 40 integer size in relatively short time. So, for example, the semi-prime-

$$
N=4633 \text { has } \sigma(N)=4788
$$

This produces the quadratic-

$$
x^{\wedge} 2-154 x+4633=0
$$

with the solution $x=[41,113]$.
Consider next the larger semi-prime-

$$
N=481267081 \quad \text { with } \quad \sigma(N)=481314064
$$

To factor this N we need to solve the quadratic-

$$
x^{\wedge} 2+[481314064-481267081-1] x+481267081=0
$$

Its solution is-

$$
\mathrm{p}=15091 \text { and } \mathrm{q}=31891
$$

As a third specific example consider the large 38 digit semi-prime-

$$
N=23573050424486730703122918564040352953
$$

for which my PC using MAPLE produces-

$$
\sigma(\mathrm{N})=23573050424486730712844388640433415168
$$

in a little less than 60 seconds. Plugging N and sigma(N) into the above quadratic then produces the factored result-

$$
x=[4629013897459001471,5092456178934060743]
$$

in an additional fraction of a second.
If I were to attempt factoring still larger digit semi-primes the calculation times on my PC would become prohibitive. To be able to handle semi-primes in the 100 digit range, such as used in public key cryptography, will require much faster super-computers and in particular additional work on $\sigma(\mathrm{N})$ calculations using existing Java language.

U.H.Kurzweg

October 31, 2022
Gainesville, Florida
Halloween

