A NEW WAY TO FACTOR LARGE SEMI-PRIMES

INTRODUCTION:

We recently found a new way to factor semi-primes $N=p q$ into their prime components p and q by use of the new variables -

$$
x=[(p+q) / 2]-R \quad \text { and } \quad 2 y=q-p .
$$

Here R is the nearest integer above $s q r t(N), p+q) / 2$ is the mean value of the prime components, and $q-p$ the difference between the two primes. Upon combining N, x, and y, these produce the single Diophantine equation-

$$
(x+R)^{\wedge} 2-y^{\wedge} 2=N
$$

which has the shape of a shifted hyperbola containing just one integer solution $[\mathrm{x}, \mathrm{y}]$. It is the purpose of the present note to show how $[x, y]$ is obtained and hence obtain a unique Quad $Q=[N, R, y, x]$ for N.

FACTORING OF N=7828229

We apply our present solution technique to the seven digit long semi-prime $N=7828229$, where $\mathrm{R}=2798$. It satisfies the Diophantine equation-

$$
(x+2798)^{\wedge} 2-y^{\wedge} 2=7828229
$$

which has the shape of a hyperbola when all points and not just integers are considered. Here is its plot-

The blue circle is where the desired integer pair solution is found. Typically it can be expected a little below were the hyperbola merges with its asymptote. To find $[x, y]$ we use the one line computer program-

$$
\text { for } \Delta \text { from b to c do }\left(\left\{\Delta, \operatorname{sqrt}\left(-\mathrm{N}+(\mathrm{R}+\mathrm{x})^{\wedge} 2\right)\right\}\right) \text { od; }
$$

For the number considered here we choose $b=75$ from the graph and run things through $c=80$. The integer result we find is $[x, y]=[79,670]$. It means it took just four trials to obtain the quad $Q=[7828229,2798,670,79]$. The values of p and q become-

$$
p=(R+x)-y=(2798+79)-670=2207 \text { and } q=(R+x)+y=2798+79)+670=3547
$$

FACTORING OF SOME ADDITIONAL SEMI-PRIMES:

Consider factoring two other semi-primes. Taking $\mathrm{N}=169331977$ with $\mathrm{R}=1303$. The corresponding hyperbola suggests we start our trials with $b=1600$ and run to $c=1650$. It produces $\mathrm{Q}=[169331977,13013,6732,1638]$ and the prime components $\mathrm{p}=7919$ and $\mathrm{q}=21383$. As a second new semi-prime take $N=3330853711$ with $R=57714$. A hyperbola plot suggests that here $b=1200$ and we go up to $c=1400$. This produces the integer solutions [$x, y]=[1366,12633$] and a quad of $Q=[3330853711,57714,12633,1366]$. From it we find, with little extra effort, that

$$
\mathrm{p}=46447 \quad \text { and } \quad \mathrm{q}=71713
$$

, whose product equals N .

CONCLUDING REMAKS:

We have shown that one can factor any semi-prime by first finding R corresponding to N and then make an implicitplot of x versus y. Using this graph as a starting search point near the beginning of the asymptotic part to give an estimate for b, we proceed with a search until $[x, y]$ is found. Having this we write down the Quad and from it write out the prime components p and q. The number of calculations will increase with increasing N but with the right choice of b the required calculations will remain reasonable.

U.H.Kurzweg

May 21, 2023
Gainesville, Florida

