## FUNCTIONAL FORM OF NTH ORDER ALGEBRAIC EQUATIONS

Nth order algebraic equations may be written as-

$$
\mathbf{y}(\mathbf{x})=\prod_{n=1}^{N}\left(x-a_{n}\right)
$$

, where $\mathbf{a}_{\mathrm{n}}$ are the $\mathbf{N}$ roots of the equation. Thus a possible quadratic equation reads-

$$
y(x)=(x-2)(x+3)=x^{\wedge} 2+x-6
$$

with the integer solutions $x=2$ and $x=-3$. A possible cubic equation is-

$$
y(x)=x^{\wedge} 3-6 x^{\wedge} 2+11 x-6=(x-1)(x-2)(x-3)
$$

with the three integer solutions $x=1,2$, and 3 . As is well known, solutions to all algebraic equations with $\mathbf{N}$ four or less can be expressed in radicals involving simple algebraic operations. However, as first shown by N.Abel in 1824, there exist no general solutions when $\mathbf{N}$ is five or greater. This does not mean, however, that algebraic equations greater than powers of $N=4$ don't exist. To get them for any integer $\mathbf{N}$ one works backwards by choosing values for $\mathbf{a}_{\mathrm{n}}$ and then multiplying out the above product form.

Let us show this approach for $\mathbf{N}=1,2$, and 3 . Here are the results-

$$
\begin{array}{rl}
\mathrm{N}=1 & \mathrm{y}(\mathrm{x})=\mathrm{x}-\mathrm{a}_{1} \\
\mathrm{~N}=2 & \mathrm{y}(\mathrm{x})=\left(x-a_{1}\right)\left(x-a_{2}\right)=x^{\wedge} 2-\left(a_{1}+a_{2}\right) x+a_{1} a_{2} \\
\mathrm{~N}=3 & \\
& \mathrm{y}(\mathrm{x})= \\
& \\
& \left(x-a_{1}\right)\left(x-a_{2}\right)\left(x-a_{3}\right)=x^{\wedge}{ }^{\wedge} 3-\left(a_{1}+a_{2}+a_{3}\right) x^{\wedge} 2 \\
& +\left(\mathrm{a}_{2} \mathrm{a}_{3}+\mathrm{a}_{1}\left(\mathrm{a}_{2}+\mathrm{a}_{3}\right)\right) \mathrm{x}-\mathrm{a}_{1} \mathrm{a}_{2} \mathrm{a}_{3}
\end{array}
$$

These expansions can be carried on to any larger integer $\mathbf{N}$, with the equations $\mathrm{y}=\mathrm{y}(\mathrm{x})$ becoming longer and longer. One of an infinite number of cubics is-

$$
y(x)=x^{\wedge} 3-6 x^{\wedge} 2+11 x-6
$$

It follows by setting $a_{1}=1, a_{2}=2$, and $a_{3}=3$ in $N=3$.
A plot of this curve looks as follows-


Here we have $y=0$ for $x=1,2$, and 3. Note the odd symmetry about the vertical line $x=2$.

One can also easily construct a quintic equation. One of these is-

$$
\mathrm{y}(\mathrm{x})=\prod_{n=-2}^{2}(x-n)=(\mathrm{x}+2)(\mathrm{x}+1) \mathrm{x}(\mathrm{x}-1)(\mathrm{x}-2)
$$

That is-

$$
y(x)=x^{\wedge} 5-5 x^{\wedge} 3+4 x
$$

It yields $y=0$ at $x= \pm 2, x= \pm 1$, and $x=0$. A plot of this last equation follows-


It is also possible to construct algebraic equations involving complex forms for the roots of $y(x)=0$. One such example is-

$$
y(x)=(x-1)(x+1)(x-i)(x+i)=x^{\wedge} 4-1
$$

A graph for this $\mathbf{y}(\mathbf{x})$ follows-


Note here the even symmetry about the line $\mathbf{x}=0$. Only the real roots $y(x)=0$ in this type of figure will show.

In all of the above algebraic equation examples we have the well known result that an Nth order algebraic equation has exactly $N$ roots some of which may be complex and multiple. These days one can quickly find all roots of an algebraic equation by the simple MAPLE computer program-

$$
\operatorname{solve}(y(x)=0, x)
$$

So if -

$$
y(x)=x^{\wedge} 6-2 x^{\wedge} 3+1
$$

we get the six roots $x=1,1,\left(\frac{1}{2}\right)[1 \pm i \operatorname{sqrt}(3)],\left(\frac{1}{2}\right)[-1 \pm i$ sqrt(3)]. Only two of these are real. It is the double root at $\mathbf{x}=\mathbf{1}$. Here is the $\mathbf{y}(\mathbf{x})$ graph-

U.H.Kurzweg

July 19, 2022
Gainesville, Florida

