EVALUATION OF THE NUMBER-FRACTION FOR ANY INTEGER

About a decade ago (https://mae.ufl.edu/~uhk/NUMBER-FRACTION.pdf) we came up with a new point-function which represents the ratio of all divisors of any integer minus the integer and one all divided by N. Mathematically one has-

$$
\mathrm{f}(\mathrm{~N})=\frac{[\sigma(N)-N-1]}{N}
$$

, where $\sigma(N)$ is the sigma function of Number Theory. This function, which we have called the number-fraction $f(N)$, has the interesting property that it vanishes whenever N is a prime number. It exhibits rather wild fluctuations ranging from zero to, what we will show below, infinity. A plot of $f(N)$ between $N=3$ and $N=61$ follows-

NUMBER FRACTION $f(N)$ OVER RANGE $3<N<61$

The average value in this range lies a little below unity with the primes clearly shown at $f(N)=0$. We call all those values of $f(N)$ greater than one super-composites. We have found numerous applications for this function including its role in twin-primes, the construction of a general prime number function, and its role in factoring large semiprimes. It is our purpose here to determine the number fraction $f(N)$ for any chosen integer N using both analytical approaches and computer evaluations.

We begin with finding all values for $f\left(p^{\wedge} n\right)$, where p is any prime number. We have-

$$
\begin{aligned}
& f(p)=0 \\
& f\left(p^{\wedge} 2\right)=1 / p \\
& f\left(p^{\wedge}\right)=(1+p) / p^{\wedge} 2 \\
& f\left(p^{\wedge} 4\right)=\left(1+p+p^{\wedge} 2\right) / p^{\wedge} 3
\end{aligned}
$$

so that-

$$
\mathrm{f}\left(\mathrm{p}^{\wedge} \mathrm{n}\right)=1 /\left[\mathrm{p}^{\wedge}(\mathrm{n}-1)\right] \sum_{k=0}^{n-2} p^{\wedge} k
$$

Summing this last finite geometric series produces-

$$
f\left(p^{\wedge} n\right)=\frac{1}{(p-1)}\left[1-\frac{1}{p^{n-1}}\right]
$$

Thus $f\left(p^{\wedge} n\right)$ approaches the finite value $1 /(p-1)$ as n goes to infinity. We have $f(625)=f\left(5^{\wedge} 4\right)=[1-1 / 125] / 4=31 / 125=0.272$.. . One can rewrite $p f\left(p^{\wedge} 2\right)=1$ as a new prime number formula-

Any number satisfying $\mathrm{J}(\mathrm{N})=\mathrm{N} /\left[\sigma\left(N^{2}\right)-N^{2}-1\right]=1 /\left[\mathrm{Nf}\left(\mathrm{N}^{\wedge} 2\right)\right]=1$
is a prime number
To test this formula consider the number $\mathrm{N}=2861$. It has-

$$
J(N)=2861 /(8188183-81855322)=1
$$

So 2861 is a prime. For composite numbers, $\mathrm{J}(\mathrm{N})$ will lie in the range $0<\mathrm{J}(\mathrm{N})<1$. For primes we have $J(N)=1$.

If one has the semi-prime $N=p q$, its unique number-fraction is $f(p, q)=(p+q) / p q$. This lies close to zero as the primes p and q get large.

To calculate $\mathrm{f}(\mathrm{N})$ for any integer N up to about twenty digit length first go to-

http://www.javascripter.net/math/calculators/divisorscalculator.htm

to find $\sigma(\mathrm{N})$ and then use $\mathrm{f}(\mathrm{N})=[\sigma(\mathrm{N})-\mathrm{N}-1] / \mathrm{N}$.
So $\mathrm{N}=123456789$ has $\sigma(N)=178422816$ yielding $\mathrm{f}(\mathrm{N})=0.44522 \ldots$.
We find local maxima in the range up to 400 at $\mathrm{N}=$

$$
60=2^{\wedge} 2 \times 3 \times 5 \quad 180=2^{\wedge} 2 \times 3^{\wedge} 2^{*} \times 5 \quad 360=2^{\wedge} 3 \times 3^{\wedge} 2 \times 5
$$

Note that these numbers have the peculiar exponential form with the lowest prime components having the highest prime power. This suggests a new point function falling into the super-composite range having the forms-

$$
2^{\wedge} 3 \times 3^{\wedge} 2=72 \quad, \quad 2^{\wedge} 5 \times 3^{\wedge} 3 \times 5^{\wedge} 2=21600 \text { etc. }
$$

So the prime components increase one prime at a time while their powers drop one prime at a time. This new rapidly growing point function generalizes to-

$$
\mathrm{F}=\prod_{k=1}^{m} \operatorname{ithprime}(k)^{\wedge} \operatorname{ithprime}(m+1-k)
$$

The ithprime values are found, for example, at-

https://primes.utm.edu/nthprime/index.php\#nth.htmlAs

As an example, we have for $m=4$ the large number-

$$
F=2^{\wedge} 7 \times 3^{\wedge} 5 \times 5^{\wedge} 3 \times 7^{\wedge} 2=190512000
$$

This has -

$$
\sigma(F)=825355440
$$

So that the number fraction becomes-

$$
f(F)=(825355440-190512000-1) / 190512000=3.33230158 . .
$$

This $f(F)$ lies clearly in the super-composite range. We have also evaluated $f(F)$ for $m=$ $10,25,50,100$, and 150. In these cases we find-

$$
\begin{array}{ll}
f(10)=5.330946 . . & f(25)=7.311348 . . \quad f(50)=8.800312 . . \\
f(100)=10.267620 . . & \text { and } \quad f(150)=11.115341 . .
\end{array}
$$

Although my PC had no problems in finding $f(F)$ for m less than 100, it did slow down to a four minute crawl finding the $f(150)$ value of 11.115. In examining all of the above $f(m)$ numbers, it seems that there is no limit to the super-composite value meaning the function -

$$
\lim m->\infty \text { has } f(F) \text { infinite }
$$

It will, however, reach infinity very slowly somewhat similar to what happens with the harmonic series.

In conclusion we can say that the number-fraction can be evaluated exactly for all Ns less than 20 digit length using my PC. For Ns greater than this value a new analytic function $F(m)$ can be used to calculate a new supercomposites $f(F)$ out to infinite value. As a final thought, we can combine N-ifactor-sigma(N)- $f(N)$ into the following four pointed compass rosetta-

U.H.Kurzweg

Dec.24.2022
Gainesville, Florida
Christmas Eve

