NUMBER FRACTIONS,TWIN PRIMES, SUPER-COMPOSITES, AND SEMI-PRIMES

Several years ago while studying Number Theory, we came up with a new fraction defined as-

$$
\mathrm{f}(\mathrm{~N})=\{\text { sum of all divisors of } N \text { minus }(N+1)\} / N
$$

In terms of the sigma function $\sigma(\mathrm{N})$, which represents the sum of all integer divisors of N , we have the new unique point function-

$$
\mathrm{f}(\mathrm{~N})=\frac{\sigma(N)-N-1}{N}
$$

which we have termed the number fraction. This integer ratio has the unique property that $f(\mathrm{~N})$ vanishes whenever N is a prime and slowly increases in locally averaged value as N increases. A plot of the first 25 of these follows-

Notice the vanishing of $f(N)$ at all primes. Furthermore the $f(N)=0$ occur only at $N=6 n \pm 1$, whenever $N=5$ or greater. No exceptions to this rule have been found inside or outside this range. So, for example, the Mersenne Prime -

$$
N=2^{61}-1=2305843009213693951=6(384307168202282325)+1
$$

Since the vanishing of $f(N)$ indicates a prime, we can also say that -

$$
\sigma(N)=N+1
$$

is a necessary and sufficient condition for a number to be prime. So N=375981413 has $\sigma(N)=375981414$ and hence N is a prime.

A most interesting result which may be drawn from the discussion above is that one can draw a new type of integer spiral where the integers are located at the intersections of an Archimedes Spiral $r=(3 / \pi) \theta$ and six radial lines $6 n, 6 n+1$, $6 n+2,6 n+3,6 n+4,6 n+5$. The Archimedes spiral between neighboring integers is replaced by straight lines. The resultant pattern is shown-

HEXAGONAL INTEGER SPIRAL

We have called this pattern the Hexagonal Integer Spiral. Unlike for the standard Ulam Spiral where primes appear to be scattered quasi-randomly, the present spiral allows primes above $\mathrm{N}=3$ (shown in light blue) to only fall along the two radial lines $6 n \pm 1$. This fact allows the effort of factoring large semi-primes to be reduced by a factor of three. In Number Theory language, all primes five or greater must have $\mathrm{N}(\bmod 6)=1$ or 5 . Semi-primes $\mathrm{N}=$ pq must also fall along the same radial lines $6 n+1$ or $6 n-1$. They will be found in the gaps between the primes . Thus the number $\mathrm{N}=35$ is a semi-prime with $35(\bmod 6)=5$.

Next we look at twin primes. These are prime numbers which differ from each other by two units. An example is [17,19]. The average value of these two numbers is $18=6(3)$. It turns out that the average value of all twin primes must be multiples of six without exception. In addition $6 n \pm 1$ must be primes. Such twin primes are easy to spot on the left of the above spiral figure. Two extra twin primes shown in the spiral are [11,13] and [29,31]. Their average is $6 \times 2=12$ and $6 \times 5=30$. Note that a $6 \times 4=24$ average fails to produce a twin prime since 25 is a composite. It is believed that there are an infinite number of twin primes when all positive averages 6 n are considered. At the same time, it is not possible to produce Triple Primes since a third prime is seen to be impossible with the required two separations between each of three primes.

Next we look at case where $f(N)$ has large values above unity. Examples from the above number fraction graph show these include $N=12,18$, and 24 . We call such numbers with $f(N)$ greater than one super-composites. They seem to be characterized by factors with high powers for the low prime number factors. Here follows an example of a super-composite-

Note the towering over its neighbors. In this particular case we also have twin primes as direct neighbors. This happens infrequently. The factoring of N here involves larger powers of the lower primes 2 and 3. That seems to be the case in general. That is, super-composites have the form-

$$
N=\left(2^{\wedge} a\right)\left(3^{\wedge} b\right)\left(5^{\wedge} c\right) \ldots . . \text { with } a>b>c
$$

This makes sense since the lower the primes being used the more the number of divisors of N will be possible. Another super-composite N is created by $\left(2^{\wedge} 12\right)\left(3^{\wedge} 8\right)(5)$ where $N=134369280$. Its immediate neighbors are not primes since the number fraction remains finite but very small at $\mathrm{N} \pm 1$.

A final point to note from our Number Theory studies is that the semi-prime $\mathrm{N}=\mathrm{pq}$ are given by the formula-

$$
[\mathrm{p}, \mathrm{q}]=\mathrm{S} \mp \operatorname{sqrt}\left(S^{2}-N\right) \quad \text { with } S=\frac{[\sigma(N)-N-1]}{2}=\frac{N f(N)}{2}
$$

Since $\sigma(N)$ is given by most advanced mathematics programs to at least 40 digits, semi-primes of this size can be factored in split seconds. Here is one such example-
$N=4605610681630941075574302042190945330849=$
$52791267530982147617 \times 87241903766148436097$
In this case $\sigma(\mathrm{N})=4959950895840793250180164495937543607888$ and $f(N)=[\sigma(N)-N-1] / N$.
U.H.Kurzweg

Otober 20, 2021
Gainesville, Florida

