ADDITIONAL PROPERTIES OF THE NUMBER FRACTION

It is well known that any positive integer can be represented by the product of primes taken to specified integer powers. That is-

$$
N=2^{a} 3^{b} 5^{c} 7^{d} \ldots \text { and } 600=2^{3} 3^{1} 5^{2}
$$

Knowing this fact, we are now in a position to evaluate the number fraction $f(N)$, discovered by us about a decade ago, for any integer using the definition-

$$
f(N)=(\operatorname{sigma}(N)-N-1) / N
$$

and letting $N=p_{n}^{a}$, with p_{n} being a prime. Here the numerator on the right of the $f(N)$ definition js just the sum of the divisors of N with N and 1 excluded. Here s. igma is the divisor function σ of number theory.

Working out the values of $\mathrm{f}\left(p_{n}^{a}\right)$ we have-

$$
\begin{aligned}
& f(p)=0 \\
& f\left(p^{2}\right)=1 / p \\
& f\left(p^{3}\right)=(1+p) / p^{2} \\
& f\left(p^{4}\right)=\left(1+p+p^{2}\right) / p^{3}
\end{aligned}
$$

from this follows the relatively simple form -

$$
\mathrm{f}\left(p_{n}^{a}\right)=\frac{1}{p^{a-1}} \quad \sum_{k=0}^{a-2} p^{k}=\frac{\left[1-p^{1-a}\right]}{(p-1)}
$$

The right hand term in this inequality follows from the geometric series.
Consider next the number $N=2^{\wedge} 6^{*} 3^{\wedge} 2^{*} 5^{\wedge} 1=2880$. We know from an earlier article on this page (Aug.3,2023) that the sigma function of N satisfies-

$$
\sigma(2880)=\sigma(64) \sigma(9) \sigma(5)=9906
$$

Also we have the relation-

$$
\sigma(N)=1+N+N f(N)
$$

So after a little manipulation, we arrive at the number fraction result-

$$
2880 f(2880)+2881=[64 f(64)+65][9 f(9)+10][5 f(5)+6]
$$

But we know from the above table that $f(64)=31 / 32, f(9)=1 / 3$, and $f(5)=0$. So we find-

$$
f(2880)=[-2881+[127][13][6]] / 2880=2.4392 \ldots
$$

We can generalize this result to-

$$
\mathrm{f}(\mathrm{~N})=\left\{-(\mathrm{N}+1)+\Pi\left[p_{n}^{a} \mathrm{f}\left(p_{n}^{a}\right)+p_{n}^{a}+1\right]\right\} / \mathrm{N}
$$

Here p_{n} is the nth prime. It is taken to the power ' a ' which varies with n. This result becomes very simple if the ' a ' remains one. Let us demonstrate for $\mathrm{N}=77$. Here we have -

$$
f(77)=\{-78+[8][12]\} / 77=18 / 77
$$

A more difficult evaluation occurs for $\mathrm{N}=720=2^{\wedge} 4^{*} 3^{\wedge} 2^{*} 5^{\wedge} 1$. Here we find-

$$
\begin{aligned}
f(720) & =\{-721+[16 * f(16)+17][9 f(9)+10][5 f(5)+6]\} / 720=\{-721+[31][13][6]\} / 720 \\
& =1697 / 720=2.35694 \ldots
\end{aligned}
$$

Note that the value of $f(N)$, when $N=p q$ is a semi-prime, has the relatively simple form-

$$
f(p q)=\left\{-(p q+1)^{*}[p+1][q+1]\right\} / p q=(p+q) / p q
$$

We a can use $N f(N)=p+q$ together with $N=p q$ to find the value of the two primes p and q. For p we have the quadratic $p^{\wedge} 2-p N f(N)+N=0$. The above case of $N=77$ is such a semi-prime.

We have shown that one can take any positive integer and find its number fraction $f(N)$ using the power expansion of the number N as the known prime values taken to the ath power.
U.H.Kurzweg

August 4, 2023
Gainesville, Florida

