
                       USE OF NUMBER SYMMETRY TO FACTOR ANY SEMI-PRIME 

 

We have shown in a previous note on this TECH-BLOG web page that any semi-prime N=pq  
can be factored  into its prime components – 

                            [p,q]=(p+q)/2∓(q-p)/2   with   p< sqrt(N) <q .  

Using the definition of the sigma function σ(N)=1+p+q+N  for any semi-prime, we can re-write 
the above as- 

                       {p,q]=(σ(N)-1-N)/2 ∓ sqrt{[(σ(N)-1-N)/2]^2-N} 

Thus if one knows the value of the sigma function, the values of p and q will follow  
regardless  of the magnitude of N. To demonstrate the exactness of the last result we can 
take the trivial case of  N=77 for which σ(N)=96. This yields- 

            [p,q]=(96-1-77)/2∓sqrt{[(96-1-77)/2]^2-77}=9∓2=[7,11] 

One is fortunate that values of the sigma function up to around  forty digit length are given by 
most advanced computer mathematics  programs (such as Maple or Mathematica) in split 
seconds. Thus the above factoring formula works well for semi-primes with smaller N  values 
but fails by time consumption when trying to factor  larger semi-primes above one hundred 
digit length such as are encountered  in public key cryptography. It suggests one find a new 
way to quickly factor larger semi-primes by expressing σ(N) in an alternate form from its basic 
definition . It is our purpose here to do this. 

We begin with the basic definition for the sigma function for N=pq. It reads- 

                  σ(N)=1+(p+q)+N    . 

With the exception of p or q being equal to the prime two, we see that both 1+N and p+q are 
even numbers, thus σ(N) will also always be an even number. Since p is taken as less than 
sqrt(N) and q is greater than sqrt(N), we can make the symmetry approximation that – 

                  (p+q)≈2sqrt(N) 

This suggests that we can re-write- 

               σ(N)=1+2(a+b)+N 

, where ‘a’ is the nearest  integer to sqrt(N) and ‘b’ a positive integer to be found. 

With this form of σ(N) , the above factorization formula  becomes- 

              [p,q]=(a+b)∓ sqrt[(a+b)^2-N]    



For the case of the semi-prime N=77 discussed above,  we have a=9 and b=0. Thus p=7 and 
q=11. In the general case we will typically have b<<a which means that σ(N) lies only slightly 
above N. 

We next apply the present factorization technique to the semi-prime- 

         N=455839 , where  sqrt(N)=675.1584 so that a=675  . 

To get b we solve R which must be an integer- 

             R=sqrt((675+b)^2-455839). 

This occurs for b=5 yielding the integer R=81. It produces the factorization- 

        [p,q]=(a+b)∓R=680∓81=[599,761] 

It is interesting to note that N=455839 has been used in the literature to demonstrate the 
elliptic curve approach for factoring semi-primes. The elliptic curve approach  is actually much 
slower in factoring semi-primes than the approach used  here . 

When N gets very large the radical appearing in the factorization will get progressively larger 
meaning  b will also increase in size. Under those conditions it is wise to use the following 
computer program-  

                    for b from 0 to B do({b,sqrt((a+b)^2-N)})od;  

So if the semi-prime is – 

     N=4758979       we have sqrt(N)=2181.508   so that a=2182  . 

The program produces in a split second that b=120 at R=735. So we get the factors- 

                           [p,q]=(2182+120)∓ 735=[1567,3037]    

What is clear from the above examples is that b increases dramatically with increasing size of 
N but the ratio of b/a  approaches zero. With high speed supercomputers the present 
approach should work for semi-primes of one hundred or larger digits. The advantage of the 
present factoring approach compared to others is that a good part of the calculations 
involving large numbers is avoided by noting that a^2 lies fairly close to N, especially when N 
gets large. 
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